
IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Towards Learning for
System Behavior

LIANGCHENG YU

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

Master Thesis

Institute for Pervasive Computing, Department of Computer Science, ETH Zurich

School of Electrical Engineering and Computer Science, KTH, Sweden

Towards Learning for System

Behavior

by Liangcheng Yu

Spring 2018

Student ID: 17-912-486(ETH) & 941005-7534(KTH)

E-mail address: liayu@student.ethz.ch & liayu@kth.se

Supervisors: Dr. Anwar Hithnawi

Dr. Hossein Shafagh

Prof. Dr. Friedemann Mattern

Prof. Dr. Lars K. Rasmussen

Abstract

Traditional network management typically relies on clever heuristics to capture the
characteristics of environments, workloads in order to derive an accurate model.
While such methodology has served us well in early days, it is challenged by the
growing intricacies of modern network design from various dimensions: the rocketing
tra�c volumn, proliferation of software applications and varied hardware, higher
user-specific Quality of Experience (QoE) requirements with respect to bandwidth
and latencies, overwhelming number of knobs and configurations and so forth. All
these surging complexity and dynamics pose greater di�culty on us to understand
and derive management rules to reach global optimum with heuristics that fits the
dynamic context. Driven by the pulls of the challenges and encouraged by the success
in machine learning techniques, this work elaborates on augmenting adaptive systems
behaviors with learning approaches. This thesis specifically investigates the use case
of the packet scheduling. The work explores the opportunity to augment systems
to learn existing behaviors and explore custom behaviors with Deep Reinforcement
Learning (DRL). We show the possibility to approximate the existing canonical
behaviors with a generic representation, meanwhile, the agent is able to explore
customized policy that are comparable to the state-of-art approaches. The results
demonstrate the potentials of learning based approaches as an alternative to canonical
scheduling approaches.

iii

Sammanfattning

Traditionell nätverkshantering bygger vanligtvis p̊a smart heuristik för att f̊anga
egenskaper hos miljöer, arbetsbelastning för att f̊a en exakt modell. Medan s̊adan
metodik har fungerat bra i början av dagen, utmanas den av växande intricacies av
modern nätverksdesign fr̊an olika dimensioner: rocketing Traumatiska volymer, sprid-
ning av programvaror och varierad h̊ardvara, högre Krav p̊a användarspecifik kvalitet
av erfarenhet (QoE) med avseende p̊a bandbredd och latenser, överväldigande antal
knoppar och konurationer och s̊a vidare. allt Dessa växande komplexitet och dynamik
gör oss mer engagerade i först̊aelsen och härleda ledningsregler för att n̊a global
optimalt med heuristik som ts dynamiskt sammanhang. Drivs av utmaningarna
och uppmuntras av framg̊angen I maskininlärningsteknik utarbetar detta arbete
p̊a att öka adaptiva system beteenden med inlärningsmetoder. Denna avhandling
anger användningsfallet eller paketplaneringen. Arbetet undersöker möjligheten att
öka systemen att lära sig befintliga beteenden och utforska anpassade beteenden
med Deep Reinforcement Lärande (DRL). Vi visar möjligheten att approximera den
befintliga canonicalen Beteende med en generisk representation, under tiden kan
agenten utforska anpassade policyer som är jämförbara med state-of-the-art-metoder.
Resultaten visa potentialen att lära sig baserade metoder som ett alternativ till
canonical planeringsmetoder.

v

Acknowledgements

I am specially thankful to Dr. Anwar Hithnawi and Dr. Hossein Shafagh for
the comprehensive mentoring and tremendous support during the thesis. Their
research style have influenced and shaped me into developing critical thinking and
methodology of conducting research with ambition in future career. I am thankful
to Prof. Friedeman Mattern for all the support and host throughout the thesis
duration. I would like to express my great gratitude to Prof. Lars K. Rasmussen for
examining the thesis, providing immediate support during the thesis and help. I
am grateful for all the insightful advice and feedbacks received from Prof. Sylvia
Ratnasamy. I would like to thank deeply all members from Distributed Systems
Group at ETH Zurich for their support of facilities, encouragement and friendly
atmosphere during the thesis.
I couldn’t thank enough to Zeno Karl Schindler Foundation for their generous

fellowship and I hope someday I would be able to give back helping others by
contributing my own e↵orts. Last but not least, I am deeply indebted with my
beloved parents, who always provide firm support to my life.

vii

Contents

1 Introduction 1

2 Background 3

2.1 Deep Reinforcement Learning . 3
2.1.1 Framework . 3
2.1.2 Approximate Solution . 5
2.1.3 Value Optimization . 6
2.1.4 Policy Optimization . 8
2.1.5 Actor-critic . 10

2.2 Packet Scheduling . 11
2.2.1 Network Data Transmission 11
2.2.2 Local Packet Processing . 11
2.2.3 Canonical Approaches . 12

2.3 Computational Framework . 13
2.4 Related Work . 14

2.4.1 Canonical Scheduling . 14
2.4.2 Machine Learning for Systems 15

3 Design 17

3.1 Motivation . 17
3.2 Abstraction . 18

3.2.1 Elements . 18
3.2.2 Formulation . 18

3.3 Agent Structure . 19
3.3.1 Interface . 19
3.3.2 Representation . 19
3.3.3 Internal Machinery . 21

3.4 Learning Scheduling Policies . 23
3.4.1 Formulation . 23
3.4.2 Taxonomy . 23
3.4.3 Methodology . 24

3.5 Exploring Custom Policies . 26
3.5.1 Formulation . 26
3.5.2 Reward . 26
3.5.3 Methodology . 26

ix

Contents

4 Evaluation 29

4.1 Simulator . 29
4.2 Learning Scheduling Policies . 30

4.2.1 A Generic Example . 30
4.2.2 Discussion . 34

4.3 Exploring Custom Policies . 36
4.4 Practical Viewpoint . 37

4.4.1 Limitation . 38
4.4.2 Implications . 39

5 Conclusion 41

5.1 Summary . 41
5.2 Future Work . 41

Bibliography 43

A Appendix 51

A.1 Installation and Configuration . 51
A.2 Reproduction of the Results . 51

A.2.1 Learning Scheduling Policies 51
A.2.2 Exploring Custom Policies 52

x

1 Introduction

In the past decade, we have witnessed the prosperity of widespread network services
and increasingly complex and heterogeneous workloads inside modern networks. As
more devices become Internet-enabled and as new applications are emerging, the
usage of the network is becoming increasingly varied, ranging from content delivery
to streaming media to IoT to social media to the tactile Internet and beyond. These
applications have di↵erent network requirements regarding bandwidths, desired
latencies and exhibit di↵erent flow characteristics. Moreover, such a high volume of
flows with diverse patterns are contending in sharing the same network. Inevitably,
they pose unique challenges on traditional network control strategies since not only
the network itself becomes more complex, dynamic, and heterogeneous but also the
expectation of user-specific Quality of Experience (QoE) grows as well. Traditional
network management policies (e.g., congestion control) rely heavily on manually-
crafted configurations and human heuristics which work only in general sense and
often miss the actual context; thus these approaches have become less e↵ective in
response to actual operation patterns and large-scale network dynamics [30, 39].

The last decade has also witnessed breathtaking results brought by machine learn-
ing techniques, especially deep learning, in many areas, to name a few, computer
vision, natural language processing, robotics, and medical healthcare [40]. Further-
more, the deep learning wave has ignited the renaissance of reinforcement learning
and sparked exciting progress in deep reinforcement learning, with which amazing
benchmarks in real-world decision-making tasks are achieved. In particular, the AI
system AlphaGo Master developed by Google DeepMind which defeated world No.1
human Go-player demonstrated the real power of machine intelligence to exceed
human potentials [1, 2, 85].

Behavioral machine learning leverages machines to self-learn the optimal sequential
decision making via interactions with the surrounding environment. Such framework
opens the door to tackling realistic decision-making tasks and shed light on the
augmenting intelligence in systems behaviors. The mechanism incorporates deep
learning models to process complex, large-volume sensory input that is faced by
modern systems. Besides, while the current canonical approach relies on human
heuristics that often work only in general case, this set of algorithms are catered
to solving decision-making problems with respect to long-term objectives by taking
the benefits of decision making history, which provides us not only the flexibility to
express our intent to meet specific system performance goals but also the possibility
of customizing network policies and behaviors to observed settings and workload of
the system by the agent.

1

1 Introduction

Driven by both pulls of the success of machine learning techniques and the
complexity of decision making in systems, we have seen growing interests into
applying machine learning approaches tackle many challenges in systems, to name a
few, optimal virtual machine selection over the cloud [15,105], database management
system configuration [98], resource management [54], video streaming tasks [55],
optimal resource configurations for data analytics workloads [42,100] and so forth. In
this thesis are particularly interested in augmenting intelligence for system behaviors.
This work looks explicitly at network packet scheduling which acts as one of

the central decision-making components in modern networks. Packet scheduling is
the process of deciding which packet is sent out next and when. It is crucial since
such decisions have overall consequences on the fairness and the completion time of
various contending flows. Besides, the end-to-end delay nowadays su↵ers largely from
queueing delay that packets enduring in switches which is directly correlated with
the opted scheduling policies. Echoing the promising directions of next-generation
network systems [26, 30, 39, 57], the thesis aims to tackle packet scheduling as a
medium to explore the implications underneath when augmenting deep behaviors
into systems, paving the way for further implementation and design.
The main contributions of the thesis can be summarized as follows:

• We model packet scheduling as a decision-making problem and build a simulator
prototype for evaluating various workloads and di↵erent scheduling agents for
queue management.

• We propose a model-free DRL agent and exploit its capability to learn existing
scheduling behaviors. Results are presented with theoretical analysis and
empirical justifications.

• We explore the feasibility for the agent to adapt its behaviors to di↵erent
settings and workloads, given the intended objective, and compare its perfor-
mances with canonical approaches.

• With packet scheduling as a use case, we explore and identify the features,
challenges, limitations, and implications when augmenting deep behaviors for
systems, suggesting tips for future work towards this direction.

The remainder of the thesis is organized as follows. Chapter 2 overviews the
background in reinforcement learning, packet scheduling, and related work of the
thesis. Chapter 3 depicts in detail the design and the methodology for the exploration.
Chapter 4 presents the results and evaluation for the design. Chapter 5 discusses the
future work and Chapter 6 summarizes this work. Finally, the appendix attaches
the instructions to reproduce the results in the thesis.

2

2 Background

2.1 Deep Reinforcement Learning

2.1.1 Framework

Intuition

Reinforcement learning is a branch of machine learning which o↵ers a powerful set
of tools for sequential decision making under uncertainty. Reinforcement learning
leverages on evaluative feedbacks to self-learn the policy which maximizes cumulative
reward. In reinforcement learning an agent learns to find an optimal policy directly
from the locus of interacting experiences with the environment without manually
specifying how the task is achieved [41]. Such property of reinforcement learn-
ing makes it appealing to many disciplines, including optimal control, economics,
psychology, neuroscience, computer science.
The storyline of the agent during a task starts from an initial state. Upon each

step, the agent exerts a valid action on the dynamic environment and typically
receives immediate reward and observations of the next state, as shown in Figure
2.1. Intuitively, such a process is analogous to a dialogue between the environment
and the agent [41]. The framework asks the agent a question and gives her a noisy
score on her answer. During the process of these interaction loops, the agent goal is
to find a policy mapping states to actions that maximize long-term reward.

Formalism

Behavioral machine learning typically involves the following abstractions and com-
ponents: environment observations, policy derivation, exploration and exploitation,
reward formulation, experiences, and policy improvement machinery.
Markov Decision Process (MDP) is the mathematical formulation of a typical

reinforcement learning problem, for discrete time MDP, it is defined by (S,A, r, T , �).

Agent Environment

action

observation, reward

Figure 2.1: Basic Reinforcement Learning Framework

3

2 Background

Starting from s0 ⇠ µ(s), at each time step, the agent observes a state st 2 S and
selects an action at 2 A, following policy ⇡(at|st). It receives a scalar reward
rt+1 and the environment transits to the next state st+1, according to reward
function r(s, a) and state transition operator T representing p(st+1|st, at) respectively.
Such dynamic process yields a sample trajetory ⌧ = (s0, a0, r1, s1, a1, r2, ...). The
agent seeks to maximize the expectation of such long term reward from each state
Gt =

P1
k=0 �

k
Rt+k, where � 2 (0, 1], i.e.,

⇡
⇤ = argmax

⇡

E[
X

t�0

�
t
Rt+1|⇡]

s.t. s0 s p(s0), at s ⇡(.|st), st+1 s p(.|st, at)

(2.1)

Additonally, markov properties give rise to the distribution of state action se-
quences for a finite horizon task [43]:

⇡✓(⌧) = p(s0, a0, ...sT�1, aT�1|✓, ⇡) = p(s0)
T�1Y

t=0

⇡(at|st, ✓)p(st+1|st, at)

✓
⇤ = argmax

✓

E ⌧⇠p✓(⌧)[
X

t

r(st, at)]

(2.2)

In many real-world environments, it will not be possible for the agent to have perfect
perception of the state of the environment. The resulting formulation is partially
observable Markov decision process (POMDP) denoted as (S,A,O, T , ", r, �), where
" stands for emission probability p(ot|st) and ot 2 O. Fortunately, with function
approximation, the partially observed setting is not much di↵erent conceptually
from the fully-observed setting [77].
Value function v⇡(s) = E ⇡[Gt|st = s] is typically used as a prediction of expected,

accumulative future reward of each state. An optimal state value is therefore defined
as v⇤(s) = max⇡ v⇡(s). They can be decomposes into Bellman Equation and Bellman
Optimality Equation respectively,

v⇡(s) =
X

a

⇡(a|s)
X

s
0
,r

p(s
0
, r|s, a)[r + �v⇡(s

0
)]

v⇤(s) = max
a

X

s
0
,r

p(s
0
, r|s, a)[r + �v⇤(s

0
)]

(2.3)

s0 s1 s2

o0 o1a0 a1

p(st+1|st, at)

p(ot+1|st+1)

⇡✓

...

Figure 2.2: A Graphical Model for POMDP

4

2.1 Deep Reinforcement Learning

Similarly, action value q⇡(s, a) = E[Gt|st = s, at = a] and optimal action value
function q⇤(s, a) = max⇡ q⇡(s, a) obey similar identities,

q⇡(s, a) =
X

s
0
,r

p(s
0
, r|s, a)[r + �

X

a
0

⇡(a
0
|s

0
)q⇡(s

0
, a

0
)]

q⇤(s, a) =
X

s
0
,r

p(s
0
, r|s, a)[r + �max

a
0

q⇤(s
0
, a

0
)]

(2.4)

Such identity is the cornerstone for bootstrapping an estimate of state or action
value from subsequent estimates [63]. Given optimal value function, it is straightfor-
ward to act optimally via greedy method: ⇡⇤(s) = argmax

a
q⇤(s, a).

Q
⇤(s, a) = E

s
0 [r + �max

a
0

Q
⇤(s

0
, a

0
)|s, a]

! Qi+1(s, a) = E
s
0 [r + �max

a
0

Qi(s
0
, a

0
)|s, a]

(2.5)

2.1.2 Approximate Solution

Integration

One distinct feature of deep reinforcement learning, compared with ”shallow” re-
inforcement learning, is that it integrates neural network approximator into the
framework [20]. Such integration scales reinforcement learning algorithms to real-
world problems [87, 97].
The approximation could be used to represent the policy function, Q function,

state value, and even environment transition when it comes to model-based learning.
With model-free deep reinforcement learning, the main task falls generally into
three categories, as shown in Figure ??: fitting action-value function with dynamic
programming, optimizing policy directly, and combining policy optimization and
value fitting, where corresponding policy and value function are parametrised.

Deep Models

Conventional machine-learning techniques were limited in their ability to process nat-
ural data in their raw form, besides, for decades, constructing a pattern-recognition
or machine-learning system required careful engineering and considerable domain
expertise to design a feature extractor that transformed the raw data into a suit-
able internal representation or feature vector from which the learning subsystem,
often a classifier, could detect or classify patterns in the input [47]. Deep models
are composed of multiple processing layers to learn representations of data with
multiple levels of abstraction. These layers of features are not designed by human
engineers: they are learned from data using a general-purpose learning procedure.
Deep models have been tremendously successful in practical applications, among
which, Convolutional Neural Networks (CNNs) have brought about breakthroughs

5

2 Background

in processing images, video, speech and audio, whereas Recurrent Neural Networks
(RNNs) have sheded light on sequential data such as text and speech [47].

This thesis mainly leverages CNNs. CNNs are specialized neural networks for
processing data that come in the form of grid-like topology, typically 3D volume
(1D time series and 2D images could be viewed as special 3D volume in which
certain dimension is with 1) [32, 47]. CNNs employ linear operations, namely
convolution and pooling to improve the machine learning system. Essentially each
CNN layer maps a 3D volume into another with such di↵erentiable functions,
transforming the representation towards a higher, slightly more abstract level,
leveraging on the insights that real-world features typically come in a hierarchical
pattern [32]. ConvNets are now the dominant approach for almost all recognition
and detection tasks, where successful architectures include LeNet [48], AlexNet [45],
GoogLeNet [95], ZFNet [106], VGGNet [86], ResNet [36] and so on.

2.1.3 Value Optimization

Value optimization methods seek to fit the state value function and derive the policy
on top of the estimation. Deep Q-network (DQN) was proposed as a first novel
deep learning agent which could process high-dimensional sensory inputs (pixel-level)
and directly self-learn the policy with comparable performances to that of human
gamers [62, 63]. Before DQN, most successful RL applications relied heavily on
hand-crafted features. The success of DQN ignited the field of deep reinforcement
learning.
DQN parametrizes state action value function with deep Q network. Reinforcement

learning can be unstable or even divergent when o↵-policy Q learning is integrated
with a nonlinear function like neural networks, this issue is known as deadly triad [93,

Policy Optimization

REINFORCE, DFO...

Value Fitting

DQN, DDQN,
Dueling DQN...

Actor-Critic

DDPG, PPO,
A2C, A3C...

Figure 2.3: General Taxonomy

6

2.1 Deep Reinforcement Learning

97]. To address the instabilities, researchers introduced experience replay for DQN,
inspired by biological mechanism in order to remove temporal correlations in the
observation sequence and smoothing over changes in the data distribution.
Experiences are stored in predefined replay memory data set D = e1, ..., et and

drawn in batches with uniform probability. Such o↵-policy mechanism enables the
agent to reuse the experiences instead of evicting immediately after a single update
and to improve the target policy with generated samples from behavioural policy.
The network is trained with respect to the loss defined in (2.6).

`i(✓i) = E (s,a,r,s0)⇠U(D)[(r + �max
a
0

Q(s
0
, a

0
; ✓�

i
)�Q(s, a; ✓i))2] (2.6)

In practice, stochastic gradient descent is applied rather than computing the full
expectations in (2.7).

r✓i`i(✓i) = E (s,a,r,s0)⇠U(D)[(r+ �max
a
0

Q(s
0
, a

0
; ✓�

i
)�Q(s, a; ✓i))r✓iQ(s, a; ✓i)] (2.7)

Another innovation of DQN is to update target network in a less frequent manner,
as shown in Algorithm 1 (adapted from [63]). The policy is straightforward by
directly applying a greedy policy to the Q function.

Algorithm 1: Deep Q-learning with experience replay

1 function Deep Q-learning ;
Input : replay memory size N
Output : optimal state-action value approximation Q

⇤

2 initialize weights ✓ for primary Q network arbitrarity

3 initialize target Q̂ network weights ✓� = ✓

4 for each episode do

5 initialize state s

6 for each step t do

7 at action derived by Q and ✏�greedy at state st

8 execute action at in simulator and observe rt+1, st+1

9 store experience et = (st, at, rt+1, st+1) in replay memory
10 sample random minibatch of experiences from replay memory

11 set yt = rt+1 + �max
a
0 Q̂(st+1, a

0
; ✓�)

12 perform gradient descent of `Huber(yt, Qst,at;✓) with respect to ✓

13 clone ✓
� = ✓ every C steps

14 end

15 end

DDQN was later proposed to mainly tackle the over-estimate problem in DQN.
(2.8) demonstrates the di↵erence between DQN and DDQN. Double DQN removes

7

2 Background

the bias caused by argmax
a
Q(s, a, ✓). Current Q network is now used to select

actions while older Q network is used to evaluate [99].

Y
DQN

t ⌘ Rt+1 + �Q(St+1, argmax
a

Q(St+1, a;✓
�
t
);✓�

t
)

Y
DoubleQ

t ⌘ Rt+1 + �Q(St+1, argmax
a

Q(St+1, a;✓t);✓
�
t
)

(2.8)

Prioritized experience replay strategy was later applied to DQN to boost the
e�ciency of learning and improve further the bechmarks than DQN [75]. The main
idea is to give more weights to those do not fit well to our current estimate of the
Q function in the sampling distribution. Specifically, the collection of historical
experiences are treated as a priority queue with key value calculated based on
temporal-di↵erence (TD) error, and, to scale the memory size N , the queue is
represented with binary heap data structure with O(logN) update complexity O(1)
for sampling [75].
There are many others DQN follow-ups, including bootstrapped DQN with better

build-in exploration strategy [65], shallow RL structure that could reproduce DQN
benchmarks [52], dueling network architechture which separates state-value and the
advantages for each action [101] and many others. Despite its great success, deep
Q learning methods are still risky of divergence and requires significant empirical
engineering. It is still promising, though, since o↵-policy methods typically yield
better policies if they work.

2.1.4 Policy Optimization

Unlike deep Q-learning family, policy gradient methods could select actions without
consulting state-action value estimates. Policy gradient methods optimize the
parametrised policy ⇡(a|s;✓) = P [a|s, ✓] directly by performing gradient ascent as:

✓t+1 = ✓t + ↵ \rJ(✓t) (2.9)

✓
⇤ = argmax

✓

E ⌧⇠p✓(⌧)[
X

t

r(st, at)] = argmax
✓

J(✓) (2.10)

where J(✓) denotes the performence measure [93]. In episodic environments we
consider J(✓) = V

⇡✓(s0) = E⇡✓
[G0] = E[

P
t�0 �

t
R

t+1
|⇡✓].

Introducing the notation r(⌧) =
P

t
r(st, at), we arrive at the following identities.

J(✓) = E ⌧⇠p✓(⌧)[
X

t

r(st, at)] ⇡
1

N

X

i

X

t

r(si,tai,t) (2.11)

r✓J(✓) =

Z
⇡✓(⌧)r✓ log ⇡✓(⌧)r(⌧)d⌧ = E ⌧⇠⇡✓(⌧)[r✓ log ⇡✓(⌧)r(⌧)] (2.12)

Taking logorithm of (2.2) both sides and substituting log ⇡✓(⌧) in (2.12), we have

r✓ log ⇡✓(⌧) = r✓[log p(s0) +
X

t

log ⇡✓(at|st) + log p(st+1|st, at)] (2.13)

8

2.1 Deep Reinforcement Learning

r✓J(✓) = E ⌧⇠⇡✓(⌧)[(
X

t

r✓ log ⇡✓(at|st))(
X

t

r(st, at))]

⇡
1

N

X

i

(
X

t

r✓ log ⇡✓(ai,t|si,t))(
X

t

r(si,t, ai,t))]

=
1

N

X

i

r✓ log ⇡✓(⌧i)r(⌧i)

(2.14)

The REINFORCE method is derived directly from the policy gradient theorem [93,
94,102]. The basic REINFORCE algorithm combined with Monte Carlo sampling is
shown in Algorithm 2, where vt is a shorthand for q⇡✓

(st, at). REINFORCE formalizes
the basic intuition of trial and error and requires no no knowledge regarding state
transition.
There are many other form of policy gradient which can be unified with a generic

form [79], shown in (2.15).

g = E[
1X

t=0

 tr✓ log ⇡✓(at|st)] (2.15)

where t could be of various forms, e.g., in REINFORCE, t =
P1

t=0 rt, and if
consider the causality of reward, i.e,, policy at time t

0
will not a↵ect reward at t  t

0
,

 t =
P1

t
0=t

r
t
0 .

ĝ ⇡
1

N

X

i

T�1X

t
0=0

r✓ log ⇡✓(ai,t0 |si,t0))(
T�1X

t=t
0

r(si,t, ai,t))] (2.16)

One major downside is that it su↵ers from high variances and low sample-e�ciency
due to on-policy nature [93]. Adding a state-value function as a baseline could
ease the issue without introducing bias, i.e., t =

P1
t
0=t

r
t
0 � b(st). A practical

baseline is the average of historical rewards, as shown in (2.17). It is unbiased since
E[r✓ log ⇡✓(⌧)b] = 0. The intuition here is, instead of assigning the credit directly
with the sampled rewards, we reinforce or penalize the agent based on how much
better is the reward than average.

b =
1

N

NX

i=1

r(⌧)

r✓J(✓) ⇡
1

N

X

i

r✓ log ⇡✓(⌧i)[r(⌧i)� b]

(2.17)

Other alternatives of t are state-action value function Q
⇡(st, at), advantage

function A
⇡(st, at) = Q

⇡(st, at)�V
⇡(st) and TD residual rt+V

⇡(st+1)�V
⇡(st) [79].

Besides, policy gradient could be turned into o↵-policy with importance sampling, in

which (t) = (
Q1

t
0=0

⇡✓(a
t
0 |s

t
0)

⇡
✓
0 (a

t
0 |s

t
0)
)(
P1

t
0=0 r(st0 , at0)) or (t) = (

Q
t

t
0=0

⇡✓(a
t
0 |s

t
0)

⇡
✓
0 (a

t
0 |s

t
0)
)(
P1

t
0=t

r(s
t
0 , a

t
0))

and the expectation is therefore taken over the behavioral policy ⇡
✓
0 .

9

2 Background

Algorithm 2: REINFORCE (Monte-Carlo Policy Gradient)

1 function REINFORCE;
Output : ✓

2 initialize ✓ arbitrarily
3 for each sampling trajectory ⌧ following ⇡✓ do

4 for t=0 to T-1 do

5 ✓ ✓ + ↵r✓ log ⇡✓(st, at)vt
6 end

7 end

Another promising alternative with quite dissimilar workflow than policy gradient
is the evolutionary method, which is less sample e�cient but exhibits favorable
properties like ease of implementation, parallelism [71,90]. Such methods typically
follow the pipeline which starts from sampling, evaluation, and fitting the model
with selected/survived instances from the original pool of sampling.

2.1.5 Actor-critic

Actor-critic methods improve policy gradients with extra policy evaluation via a
biased critic: Qw(s, a) ⇡ Q⇡✓

(s, a) [93]. Hence, actor-critic algorithms follow an
approximate policy gradient as

r✓J(✓) ⇡ E ⇡✓
[r✓log⇡✓(s, a)Qw(s, a)] (2.18)

A collection of algorithms follow the acter-critic framework. Asynchronous Ad-
vantage Actor-Critic (A3C) [61] typically implements multiple workers in parallel on
multiple cores and performs gradient update in a Hogwild pattern [69]. Similar to
experience replay, asynchronous update provides an alternative to break the correla-
tion of colelcted samples. Deterministic Policy Gradient (DPG) models the policy as
a deterministic decision a = µ(s) and Deep Deterministic Policy Gradient (DDPG)
combines it with DQN in a a o↵-policy actor-critic manner [53,84]. They are suitable
to address tasks involving continuous action. The exploration is realized via adding
noise to the original action µ

0
(s) = µ✓(s) +N .

TRPO harnesses the intuition that to improve training stability, we should avoid
parameter updates that change the policy too much at one step [78]. TRPO aims to
maximize the objective function subject to trust region constraint which enforces
the distance between old and new policies measured by KL-divergence to be small
enough, within a parameter � [78]. Proximal Policy Optimization (PPO) is an
improvement over TRPO since it simplifies the complicated constraint by using a
clipped surrogate objective while retaining similar performance [37, 80].

10

2.2 Packet Scheduling

2.2 Packet Scheduling

2.2.1 Network Data Transmission

Computer networks are essentially a large set of edge nodes – personal computers,
mobile phones, servers, and so on – connected with an interconnected group of
forwarding devices like switches and routers1. Bit streams are generated by network
applications and chunked into unit of ”packets” by the implemented software stack
over OS and hardware devices (e.g., NIC) of the source hosts. Packets form into set
of flows according to the belonging communication sessions and traverse through the
network. Routers and switches forward the packets leveraging on the meta data in
packet headers and the network conditions, which ideally would be received by the
destination endpoint and responded with corresponding acknoledgements [46, 59].

Networks are dynamic and input driven: high volume of contending data flows
could overwhelm the network infrastructure and therefore impair the performance
of the network in forms of packet losses, transmission latencies; besides, network
infrastructure itself could su↵er from malfunction, such as power down of the end
servers, suspension of a link and so forth. Therefore, packet scheduling and con-
gestion control are necessary to come in and act as two crucial decisions making
mechanisms to ensure network performances. Congestion control focuses on prevent-
ing overwhelming tra�c from the source host typically via dynamically observing
network states and feedbacking to the source end with instructions to pause or
continue sending packets. This thesis mainly looks at packet scheduling, which
resides in local switches and determine when and which packet to send out next
from the pool of queueing packets over the transmission link in order to achieve
certain objective.

2.2.2 Local Packet Processing

Below is a summary of the typical processing pipeline of a unicast packet in a
store-and-forward switch (output queued packet switch).

Prephase Processing

Upon arrival of a packet, it is first validated to insure correctness (checksum, time-
to-live), compatibility (protocol, IP version) and security (DoS attacks). Additional
processing typically includes decrement of packet time-to-live (TTL) field to prevent
endless circulation of the packet. Eligible packets are then forward to corresponding
egress port queue based on destination lookup (e.g., longest-prefix-match (LPM)) [96].

1We use router and switch interchangeably.

11

2 Background

Queue Assignment

Typically, the packet is classified and appended to specific queue of the link de-
pending on the meta data in the packet header (e.g., Type of Service (ToS) field,
source/destination port). The representation of the queue is switch-specific, it
could be find-grained, even per-flow queue, though it is prohibitively expensive due
to the maintaining of per-flow statistics, or be coarse-grained so that each queue
comprises packets from multiple flows. O↵-the-shelf routers usually set up a fixed
number of queues with predetermined rules to assign packets to queues. When
the link is overwhelmed, the packet could be dropped or marked on the explicit
congestion notification (ECN) field according to the implemented bu↵er management
policies (drop-tail, random early detection (RED)) [96].

Scheduling

Triggered by bu↵er occupancy, each egress link scheduler makes independent decision
on when and which packet to dequeue next, according to the hardcoded scheduling
algorithms.

2.2.3 Canonical Approaches

Packet scheduling is essentially about the decision on when and which packet to
dequeue next. Such decision is made based on the specific domain information. As
an example, STFQ [34] bases the decision on the meta information of virtual start
time for each packet which is maintained per-flow/per-queue and updated upon
enqueue and dequeue events as shown [88]. The decision is directed to the packet
with minimum virtual start value.

Packet scheduling algorithms are objective oriented: they are derived in order to
achieve certain objectives (fairness [28,67,82,107], deadline awareness [50,73], prompt
completion of flows [16]) in di↵erent network environments (Internet, datacenters,
cellular networks). Hence, one would prioritize certain packet scheduling algorithms
given specific deployment objectives. For instance, if fair share among flows is
of top priority (e.g., in Internet), one would prefer WFQ algorithms like WDRR
which strive for fairness. However, to advance flow completion (e.g., in Data Center
Networks), one would probably apply SJF, SRPT which are customized to minimize
flow completion time (FCT).
There is a large glossary of existing packet scheduling algorithms and its variants,

combinations of hierarchical ones and so forth. Below is a gentle walkthrough of a
subset of them from the perspective of decision-making criteria.

Time Awareness

First In First Out (FIFO), or First Come First Serve (FCFS) dequeues the packet
with that arrives at the link earliest w.r.t. wall clock time, while Earliest Deadline
First (EDF) prioritizes the flow with closest deadline.

12

2.3 Computational Framework

Service Type

Strict Priority (SP) schedules packets based on the service priority of the flow. Such
meta information is carried in the header of the packet, typically ToS field and is
tagged at the end host. With SP, flows of higher priority will be favoured always,
indicating that best e↵ort queues might be starved for resources.

Fair Share

To achieve fair share, ideally, network resources should be served in a bit-by-bit fash-
ion [28,66]. However, switches are store-and-forward devices and data is transmitted
in the unit of separate packets. There are a number of algorithms to approxi-
mate fairness of network resource share. Round Robin (RR) and Weighted Round
Robin (WRR) serve the queues in a circular fashion to achieve the concept of fairness.
However, they su↵er from limitations since they do not take into account the unfair-
ness due to the packet size diversity. Deficit Round Robin (DRR) and Weighted
Deficit Round Robin (WDRR) [83] instead define a quantum of resource and update
the deficit of each queue upon enqueue and dequeue to achieve equal/weighted
bandwidth share. In general, resources are allocated to the queue that contains the
maximum deficit. Start Time Fair Queueing (STFQ) achieve fairness by maintaining
a per-flow state of virtual start time. Therefore, the flow with minimum virtual
start time is prioritized for transmission.

Flow Completion

Shortest Job First (SJF), Shortest Flow First (SFF) and Shortest Remaining Pro-
cessing Time (SRPT) [16, 76] all advance flows that are expected to finish first.
They dequeue the flow with least front packet size, minimum total flow size and
shortest remaining flow size respectively. Flow size meta data is initialized at the
end host and typically available for the switches. In practice, there are preemptive
and non-preemptive variants.

2.3 Computational Framework

Apart from the increase of computing power, hardware capabilities and new al-
gorithmic techniques, mature software packages and architectures are also what
sit beneath the current AI success [92]. Modern frameworks like Tensorflow [12],
MXNet [8], Torch/PyTorch [11], Ca↵e [3] and so on boost the productivity of deep
learning pipeline with built-in support like auto di↵erentiation. The thesis leverages
the computation mainly over ETH Leonhard and Euler cluster [5, 6].
Tensorflow is an interface to express algorithms in the form of computation graph

representation on a wide variety of heterogeneous systems, ranging from mobile
devices to large-scale distributed systems with GPU cards [13, 14]. Unlike Torch
which supports dynamic graphs [68], Tensorflow operations do not run at define

13

2 Background

time and computation graphs are predefined prior execution. The client uses the
Session interface to communicate with the master and variable number of worker
processes. Computational devices are instructed by the master before execution. A
computing device are identified by its type, index within scope of the worker, and if
with distributed setting, also job and task of the worker. Example device names are
/job:localhost/device:cpu:0 or /job:worker/task:17/device:gpu:3 [13]. The placement
algorithm is responsible to map operations into the set of available devices before
the original graph paritioned into a set of subgraphs [13, 14].

2.4 Related Work

Network scheduling has been extensively studied during past decades, with a large
glossary of algorithms and design which elaborates on di↵erent objectives and
scenarios. However, these approaches share the same heuristic based mindset
neglecting the potentials of augmenting behaviors through systems themselves.
Meanwhile, we have also witnessed the emerging practices of applying machine
learning into systems stimulated by the pushes from the success of deep learning,
increasingly mature software instruments and hardware support. This section will
first walk through the canonical approaches of network scheduling and then highlight
the recent practices of machine learning for systems.

2.4.1 Canonical Scheduling

A broad spectrum of literature exists in order to deal with the diverse settings of
scheduling problem, as mentioned in Section 2.2.3. Recent work continuously focuses
on optimizing objectives under scenarios and assumptions that are of interest.
To sample a subset of these interesting work, pFabric [16] proposes a datacenter

transport design that minimizes FCT in a near theoretically optimal sense, decoupling
flow scheduling from rate control. D

3 presents a deadline-driven delivery control
protocol that does not require routers to maintain per-flow state [103]. PDQ achieves
both the intention of minimizing FCT and deadline awareness [38]. Universal packet
scheduling (UPS) elaborates on finding the universal packet scheduling algorithm
that could replay existing ones from both theoretical and practical viewpoints [60].
Programmable packet scheduling abstracts broad range of sophisticated scheduling
algorithms with priority and calendar queues [88]. PIAS proposes multiple level
feedback queue mechanism seeking to approximate SJF with no prior knowledge
which supports existing commodity switch hardware [17]. QJUMP applies the
concept of latency sensitivity level to datacenter applications that enables higher
rank packets to jump the queue over those lower to mitigate network interference [35].
Remy [104] extracts congestion control as a function module and generate rules
automatically for endpoints taking in the inputs like network assumptions and
objectives, whose derived algorithms outperform the state-of-arts in NS-2 simulation.

14

2.4 Related Work

These approaches for systems are typically derived from heuristics compound
with meticulous tuning and are rigid with fixed commands that lacks cognitive
capabilities, hence they are not suited to meeting the uncertainties and complexity
of our objective as systems evolve [26].

2.4.2 Machine Learning for Systems

Current systems are filled with heuristics dicisions and user-tunable knobs which
opens the opportunities for a recent surge of detected problems that could be
exploited with machine learning techniques with potential of comparable or even
exceeding performances than heuristics approaches [27].
Recent practices in research community have also shown the benefit of applying

machine learning based approaches into systems decision-making. Machine learning
techniques are used to reduce cooling cost bill in datacenters [4], virtual machine
configuration [105], database management system (DBMS) configuration [98]. Be-
sides, the progress in behavioral machine learning techniques like OpenAI Five [10],
Atari Games [63], robotics [51] have ignited the enthusiasm of augmenting systems
with such sequential decision making paradigm. For instance, DeepRM translates
the resource management task into learning problem, and is comparably to state-of-
the-art heuristics adaptive to di↵erent conditions and objective [54]. [25] presents a
reinforcement learning (RL) based scheduler that can dynamically adapt to tra�c
variation in cellular networks. Pensieve applies deep reinforcement learning into
video streaming tasks that generalizes across various network settings [55]. AuTo
applies deep reinforcement learning to automate tra�c optimizations instead of
relying on heuristics of operators decoupling the decision making with respect to
short flows and long ones [24]. Reinforcement learning has also been applied to
replace heuristics in device placement [58], index structures like B-Trees [44] and
graph-based cluster Scheduling [21].

15

3 Design

In this chapter, we start by motivating the need to design systems that can derive
decisions based on their experiences to meet predefined goals. Then we dive into
the packet scheduling problem and abstract it within a decision-making paradigm.
We present the structure of the agent that is capable of adapting its behaviors.
After that, we studied two concrete cases: cloning existing scheduling behaviors and
exploring custom policies.

3.1 Motivation

Traditional network design solutions heavily rely on clever heuristics and manual
configurations. As an example, today’s TCP congestion control mechanism is filled
with parameters that are tuned with heuristics, e.g., initial congestion window
size (init cwnd), additive increase/multiplicative decrease parameters in AIMD rate
adaptation [39]. While in early days, these heuristic based systems have been hugely
successful and e↵ective, the overwhelming complexity, growing decision space, higher
QoE expectations and increasing dynamics of modern networks are rendering such
rigid network design paradigm to be sub-optimal and less satisfactory in response to
variant conditions [29, 39, 104]. Such heuristic based methodology typically develops
solutions based on a simplified model for ongoing problem that are intended to
work well in general without adapting to the actual context. The growing degree of
scale, heterogeneity and complexity of networks, it is increasingly hard to derive an
accurate model and reach the global optimum with white-box design philosophy [74].
It is also increasingly challenging to capture workload-level characteristics with
heuristics and even so, when certain aspects of the problem context change, the
workflow of meticulous tuning has to be repeated, which compels us to explore the
alternatives that can better address the ever-increasing complexity and dynamics of
networks.
In this light, it is appealing to design systems that can learn to optimize their

decision and behavior in the local domain by interacting with the environment and
learning the system dynamics (i.e., exploration), and systematically exploit past
experiences to make better decisions adaptively. Unlike heuristic based adaptive
approaches which are fixed with hardcoded rules, here we are pursuing the one
that exploit past experiences and wider sources of signal. We are enticed by
the automatic&structured systems design setting where the human designers only
states the intention (objectives, requirements, assumptions) as input triggering
the automatic process synthesizing the information (intent, environment, workload)

17

3 Design

which will figure out the best corresponding behaviors [89]. Such paradigm enables us
to equip the system with derived customized policy based on deep understanding of
the environment and o↵ers a promising direction to explore, meanwhile accompanying
with challenges to be addressed, both from the statistical point of view regarding
the used machine learning framework, as well as the systems point of view given we
need to design systems to be more native and flexible with the continuous learning
artifice.

3.2 Abstraction

3.2.1 Elements

To apply such paradigm, it is crucial to extract the key relevant components related
to systems decision making behaviors.

• Decision making interface: the decision that exerts influence on the target
environment of interests

• Observation: the information supporting the systems decision

• Consequence: the resulting behavior of the dynamic environment

• Objective: the ultimate goal of the system behaviors

• Feedback loop: the mechanism of improving the decision making mechanism

• Metric: the criteria to evaluate if the behavior excel in specific tasks

3.2.2 Formulation

We formulate packet scheduling as a decision making task on queue management.
Although packet scheduling involves infinite steps and therefore exhibits a continuing
task pattern, we treat it as an episodic task given the fact that packet flows come in
a finite-step session nature. Upon each episode, a finite set of packet flows constitute
a workload that would traverse the forwarding device(s) from the source to the
destination.
Packet scheduling is essentially about making a decision on when and which packet

to dequeue next. For simplicity, we assume that the scheduling is non-preemptive,
i.e., the ongoing transmission of the packet can not be interrupted. Since the packet
coming earliest within the same flow would take precedence always, we assume per-
flow queue to maintain a generic representation across di↵erent scheduling algorithms.
As shown in Figure 3.1, the classifier is to assign the packet to the flow based on
its meta data 1. By taking an action on a queue, the agent is dequeueing the front

1A flow can be identified by the tuple (source ip, destination ip, source port, destination port,
protocol).

18

3.3 Agent Structure

packet for the chosen queue. To be specific, we assume K queues to acquire a fixed
state and action representation as neural net input. Upon each dequeue event, the
agent decides on the queue to be scheduled in such linear action space, and if, the
empty queue is chosen, the agent is taking an idle decision for a quantum time step,
hence, it is not necessarily work-conserving.

Figure 3.1: Packet Scheduling Abstraction

3.3 Agent Structure

The abstractions of the scheduling agent include the interface with the environment
to exert actions and receive rewards, the internal representation of the policy, and
the adaptive machinery.

3.3.1 Interface

The observation of the agent mainly consists of per flow statistics, including time of
arrival, packet size of front packet in the queue, binary feature indicating presence
of the queue, flow size, remaining flow size and so on. Besides, agent is also able
to observe the historical scheduling decision log and information beyond local link
statistics feedbacked by a global controller. The action space of the agent consists
of the set of queues to dequeue, i.e., A = {1, 2, 3, ..., K}. Reward is calculated
depending on the context of interests, which guides the agent to explore the best
policy achieving the intended objective.

3.3.2 Representation

Tabular Representation

Representation is about proposing hypothesis to model, e.g., the target policy
function. In realistic tasks, it is necessary to leverage on parametrised representation

19

3 Design

since tabular approaches are with limited capabilities. Exact solutions with tabular
form has the advantage of being straightforward and explainable, besides, it is
guaranteed to reach global optima given enough visits of all possible states and
actions.

Figure 3.2: Tabular Representation Does Not Scale

However, it is impossible to store and visit all states given the explosion of state
complexity. To illustrate, Figure 3.2 shows the learned Q(s, a) table with tabular
Q learning algorithm. Each tuple in the table stands for corresponding Q(s, a)
value. The agent determines the action a with ✏�greedy at state s and observes
the environment transition r, s

0
. The table gets updated by bootstrapping with

Q(s, a) Q(s, a) + ↵[r + �max
a
0Q(s

0
, a

0
)�Q(s, a)]. In a simplified context where

the action consists of 3 candidate bu↵ers and the state is the priority of the front
packet for the queue (0 indicates empty bu↵er and smaller tag indicates higher
priority), after exploration, the policy encoded in the Q table is exactly SP when
applying the greedy strategy, as demonstrated by the state action values. However,
it does not scale since the state space possibilities corresponds to N

K , where N is
number of possible priorities, not to mention the infinite case of continuous state like
time stamps. Hence, it is inevitable to apply non-linear function approximators such
as neural networks, that could interpret rich sensory inputs and enable generalization
over limited experiences with a manageable number of learnable parameters, in order
to scale to realistic complex tasks.

Parametrised Representation

As mentioned in section 2.1.2, deep models like CNNs are powerful for automatic
feature extraction and detection. We consider to parametrise the policy and state

20

3.3 Agent Structure

value function with both CNNs and regular NNs, where w, ✓ 2 Rd correspond to
weights, biases in the NNs.

Vw(s) ⇡ V
⇡(s)

⇡✓(s, a) ⇡ ⇡(s, a)
(3.1)

We use CNNs as the main form of representation in order to exploit the 3
dimensional structure of the input: flow, feature, and time frame. Considering that
the correlation mainly exists along the dimension of flows instead of features, we
apply 1D convolution 2 to each feature vector, i.e., the 1-D filter will only connect
to a local region of each feature vector and share the weights along the dimension of
flows.
It is worth mentioning that the value network is merely for assisting the experience

learning during exploration, only policy network is triggered when the agent makes
online decisions.

3.3.3 Internal Machinery

Preferences

The policy gradient algorithms are preferred over value fitting algorithms in our
context. From the theoretical viewpoint, policy gradient methods are what actu-
ally performs gradient descent/ascent on desired objective E s0⇠p(s0)[V

⇡(s0)]. Policy
gradient methods directly optimize the cumulative reward objective and can straight-
forwardly be used with nonlinear function approximators such as neural networks
with guarantee to converge to (local) optima with gradient methods [94]. Value
based methods, however, su↵er from risks of divergence with non-linear function
approximators. Besides, the process of minimising Bellman error is not the same as
optimizing expected cumulative reward. Moreover, policy gradient methods could
encode stochastic policies and could natually handle high-dimensional or continu-
ous action space, compared with deterministic policies via value fitting methods
combined with greedy methods.
From the practical perspective, although empirical techniques like fixed target,

experience replay could alleviate the instability of approximate value fitting methods,
it requires more engineering e↵orts and lacks the virtue of ease of use. What’s more,
such instability would undermine our trust into the systems behaviors. There are
problems with policy gradient methods, though, they are inherently less sample
e�cient and su↵er from high variances due to on-policy and Monto Carlo sampling.
However, unlike robotics where acquiring sampling data is expensive, in network
systems scenarios we consider the sample e�ciency as trivial to some extent since
there is a huge amount of input data with highly repetitive pattern. Thus, policy
gradient methods are preferred for applications in our systems settings.

2Corresponding to tf.layers.conv1d in Tensorflow.

21

3 Design

Figure 3.3: Framework Overview

Closed Loop Iteration

Figure 3.4 shows the general machinery of the agent. Starting with random policy
indicating no prior knowledge of the task, the agent continuously interacts with the
environment and receives the reward judging the quality of the agent’s footprint,
with which batches of experience tuples E = {e0, e1, ..., eT�1} are formed and used
to improve the policy, typically by back propagating [49, 70] the fitted loss to
the parametrised policy/value network with a specific learning rate3. The agent
using policy gradient is inherently encoded with the mechanism to balance between
exploration and exploitation: with more and more reinforces on positive actions,
probability to sample poor actions is reduced, leading to further exploitation as the
iteration proceeds, meanwhile, the opportunity of exploration is o↵ered due to the
sampling of actions during exploration.

Figure 3.4: General Pipeline

We consider a o✏ine setting, i.e., separating the exploration and deployment phase.
During the exploration, the agent explores the best behavior and actively adapts to

3We use adaptive Adam optimizer [22] to perform SGD.

22

3.4 Learning Scheduling Policies

the settings based on experiences, while during deployment, the agent machinery
remains fixed. Though online setting seems appealing for full adaptiveness of systems
behavior, it increases the risk when such exploration leads to dangerous outcomes,
especially, when fallback mechanism is absent. What’s more, exploration online
involves significant computation burden overhead for real-time decision making.
Therefore, in practice, the agent could be updated periodically depending on the
frequency of scenario change in an o✏ine fashion.

Baseline

As mentioned in Section 2.1.4, when trying to improve the policy, raw rewards
could be too noisy for the agent during exploration and negate the learning process.
Step-dependent simple average with ”vanilla” policy gradient [77] requires fixed
horizon. Although one could enforce the fixed step size across episodes via manual
zero padding, such baseline gives little information judging the action at given state,
and introduces significant noise when the steps of episodes are diverse even with
exactly same driven traces, which is the case in our event triggered scenarios. We
instead look at state-dependent baseline which reflects the average value of the state:
during the improvement of the policy, the agent also fits the state value function
with a parametrised network; during decision making, such value network is used to
judge the expected reward of the state, and determine the quality of the action.

3.4 Learning Scheduling Policies

3.4.1 Formulation

The underlying question to explore could be framed as: is it feasible for an agent to
self-learn di↵erent scheduling policies directly via experiences? Additionally, could
we achieve such a goal while maintaining a consistent and generic representation
of agent architecture, i.e., without elaborated feature engineering? Formally, the
agent starts without any knowledge about the target scheduling policy ⇡

⇤, i.e., an
initial random policy ⇡

0. The agent interacts with the environment and learns from
historical experiences by updating current scheduling policy ⇡ ! ⇡

0
to approach

⇡
⇤. Taking such road to learning existing approaches is appealing since we could

not only reveal the potential of adaptive behaviors of cognitive agent, but also, in
experience-hungry settings, cloning existing robust behaviors could be leveraged to
bootstrap the system.

3.4.2 Taxonomy

First class of policies include FIFO, SP, SFF, SRPT, SJF and FQ. These policies
filter out empty queues and dequeue the one with minimum relevant key (e.g., time
of arrival, priority, packet size). More formally, the process of learning corresponds

23

3 Design

to ⇡✓(o) ⇡ ⇡
⇤(orelevant) = I

g�1 min o
non�empty
relevant

(a), where g : A ! V is the mapping of
action space to its feature space.
Second class of policies, RR and DRR (work-conserving), are more general in

the sense it di↵ers from just taking the flow with minimum key, i.e., ⇡✓(o) ⇡
⇡
⇤(orelevant) = f(onon�empty

relevant
). For instance, DRR takes into account both the deficit

and front packet size of the queues and makes decision on the queue that will lead
to largest remaining deficit.
For third class of policies, STFQ, WRR, WDRR, the agent does not observe the

full space of features (e.g., predetermined weights), i.e., ⇡✓(o) ⇡ ⇡
⇤(orelevant, sinternal).

For example, for STFQ, it maintains a weighted virtual starting time for each flow,
however, the agent neither observes the weights nor such per-flow statistics.

3.4.3 Methodology

To clone target scheduling behaviors, we need access to information regarding the
target system. Cloning typical scheduling algorithms indicates the availability to full
dynamics of the target scheduling algorithm (e.g., canonical ones like SJF), and we
consider it straightforward that we run the target scheduling system under each step
of the agent to signal the reward for the decision, e.g., if the agent successfully repeat
the decision of the target scheduling algorithm, it will yield reward +1, otherwise 0.
In the extreme case, such signal could indicate the exact truth to label the decision
of the agent, which could be realized via supervised learning. We consider as well a
more generic assumption where the only the input and output packet sequence of
the target system are available and the machinery of the target system is a black
box. To be more specific, we adopt the network model and definition in [60]. When
we apply di↵erent scheduling policies ⇡↵, ⇡

0
↵
for link ↵ with same driven packets

{(p, i(p), path(p))}, we consider ⇡↵ replays ⇡
0
↵
with respect to the input if and only

if for the set of output times {o(p)}, {o
0
(p)}, 8p 2 P, o

0
(p) � o(p).

It is worth mentioning that it is infeasible to assign positive reward only if the
output packet sequences produced by the agent and the target policies are exactly
the same. The main reason is that the sparsity of the reward will grow exponentially.
To illustrate, with 10 flows and 50 packets per flow on average in the workload,
since the agent starts with random guess, it is expected to take 10500 episodes to
just reach a first positive reinforce to reproduce the full sequence as target policy.
Such extremely sparse reward will be discouraging the agent to learn e↵ectively. It
is also worth noticing that due to the avalanche e↵ect of the decision making, a
single deviation of the decision would lead to permanently di↵erent environment
scenarios. Hence, for sequence level comparison, we assign positive rewards to those
packet due to the target deadline and zero reward otherwise. As demonstrated by
algorithm 3 using REINFORCE with state value baseline [93], we take advantage
of the fact of the availability of the expert or oracle, to guide the agent with more
dense reward signals. Each episode is of variant length, due to the nature of tra�c
settings, also, the agent updates its policy network and value estimates upon the end
of the episode and receives no intermediate rewards during the scheduling process.

24

3.4 Learning Scheduling Policies

Algorithm 3: REINFORCE with State-value Baseline

1 function REINFORCEA;
Output : policy network weights ✓

2 initialize ✓ and state value weights w arbitrarily
3 for episode i do
4 initialize the environment with tra�c traces
5 for each scheduling step t do

6 repeat

7 sample action at ⇠ ⇡✓, ât ⇠ ⇡
⇤ at state st

8 store record dt = (st, at, ât) in database D

9 until no new packets incoming ;
10 end

11 for each record dt do

12 if at == ât then rt 1;
13 else rt 0;
14 form experience tuple et = (st, at, rt)
15 end

16 for t = 0 to Ti � 1 in sampled trajectory ⌧i do

17 Gt return from step t

18 � Gt � v̂(st, w)
19 w w + ��

t
�rwv̂(st, w)

20 ✓ ✓ + ↵�
t
r✓ log ⇡✓(st, at)�

21 end

22 end

Algorithm 4: Workload exploration

1 Workload exploration;
2 sample K workloads from the target workload distribution
3 initialize the parameterized policy ⇡✓,w randomly
4 for each iteration do

5 for each workload {zt}
(k)

do

6 sample episodes i = 1, 2, ..., N
7 for {⌧i} do

8 w w + ��
t
�rwv̂(st, w)

9 end

10 for {⌧i} do

11 � Gt � v̂(st, w)
12 ✓ ✓ + ↵�

t
r✓ log ⇡✓(st, at)�

13 end

14 end

15 end

25

3 Design

3.5 Exploring Custom Policies

3.5.1 Formulation

Besides learning existing scheduling behaviors, we are compelled to explore the
benefits underneath such intelligent agent, i.e., if the agent could explore herself
policies that are comparable and even better than those leveraging on human
heuristics with painstaking design workflow w.r.t. certain objective and certain
workload.

3.5.2 Reward

Unlike learning scheduling policies, the design of reward is less explicit. One of
the key challenges to explore custom policies in systems decision making is to
design a proper reward scheme that both reflects exactly the intended objective and
meanwhile maintains learnability for the agent towards the target.

Queueing Delay

End-to-end delay (half of RTT) of a packet consists of transmission delay, propagation
delay, processing delay and queueing delay. While the former three sources of delay
are relatively static and are mainly determined by the hardward configurations and
network infrastructures, queueing delay is highly correlated with the decision making
of the agent. Hence, minimizing queueing delay could help reducing end-to-end
delay given fixed network infrastructures.
We are interested into minimizing average queueing delay for all the packets

passing through the link. Hence, the objective could be formulated as
P

N

i
T

Q

i
,

where N is the total number of packets in the workload. The reward could be
formulated as the penalty for the packets queueing in the bu↵er at each step, i.e.,
Rt = �

P
n

i
(tnext � tcurrent), where n refers to total number of packets in the bu↵ers.

To avoid bias on large size packets, a variant of objective normalized with packet
size could be formulated as

P
N

i
T

Q

i
/Li.

3.5.3 Methodology

Analysis

Compared with Section 4.2.1, the agent is faced with a more challenging task: not
only the reward signal is more noisy but also the observation of the environment is
much more partial. The agent neither knows exactly the statistics of the packets
apart from the front packet of the queue nor the time advance to the next state during
the decision making, besides, the input driven traces are online with characteristics
unknown to the agent a priori, which unfortunately are part of the calculation of the
reward related to the true objective (queueing time, flow completion time and so
on). The environment uncertainties also combines the dynamics of the online input

26

3.5 Exploring Custom Policies

traces in the form of input driven MDP [56]. All these makes the exploration task
much more challenging.

Machinery Augmentation

When exploring custom policies with a noisy environment, the choosing of policy
learning rate is crucial: a large learning rate will probably leads to a drastic hop to a
poor policy and therefore generates bad experiences, leading to worse policy learned
and worse experiences and so on; a small learning rate, however, will lead to slow
improvement and significant decrease of exploration e�ciency. Although the tuning
of policy learning rate is intuitive, with noisy and challenging tasks, and it is typical to
reduce the learning rate, yet, to find a best tradeo↵ between the exploration e�ciency
and stability can be time consuming, especially for the input driven environment
where the full dynamics of the environment is determined also by the online arriving
traces, leading to even more non-stationary experiences collected by the agent.
Therefore, the agent maximizes surrogate objective subject to a constraint on the
size of the policy update, as suggested by TRPO [78]. In practice, it corresponds to
unconstrained optimization problem with clipped surrogate objective [80].
Incorporating parallel mechanism could speed up the training and overcome the

limitation of correlated experiences collected with single agent.
Hence, each fixed workload is exposed to N workers separately and collect the

experience tuples et to the global agent which performs the gradient update and
shares the encoded policy with the workers. This could happen asynchronously
without locking the workers when the global agent is performing update.

Reward Shaping

We also consider changing the reward as the exploration proceeds [64, 93], specif-
ically, we find it empirically helpful to punish the agent in the early phase when
it is non-work-conserving, and then proceeds with the exploration of the intended
objective. The reward formulation for directing the agent to be work-conserving is
straightforward, when the agent makes a decision on an empty queue, we punish
with reward -1, otherwise 0.

27

4 Evaluation

4.1 Simulator

Unlike games, learning via trial and error in real world network systems can be
extremely expensive and risky. Besides, network operators are often reluctant to
carry out the deployment with concerns of security, cost, and SLA violations [18].
Hence, we adopt the typical practice of using simulator in reinforcement learning to
study the prototype before we gain real confidence in them and move it into real-
world system testbed. Such simulating approach also allows the agent to experience
the environment with stronger flexibility without being restricted by the wall-clock
time interactions. To be specific, we build our own packet-level simulator with
extracted interesting elements and feed with realistic tra�c traces and settings, such
simulated environment allows the agent to gain experience without constraints of
wall-clock time and heavy overheads. Existing simulators like NS-3 [9], or network
emulator like mininet [7] involve heavy stack of burden for the exploration of machine
learning approach.

Simplification

For packet scheduling, the key is to abstract the life time of the packets, which
includes the synthesizing of the packet, forwarding, enqueue, dequeue at a switch
link, and sink at the destination host. Hence, we simplify the routing behavior of
routers via hardcoding the forwarding table prior simulation based on the synthesized
flows. The intricacies related to finite state machine of end hosts, protocol stacks as
well as congestion control mechanism at network layer are neglected as well. Besides,
we set the bu↵er size to be large enough to prevent packets from dropping, since we
are mainly concerned with packet scheduling, not bu↵er management. Sequences
of packets are therefore generated at the source nodes and traverse through the
forwarding devices until arrivals at the destination endpoints. These aspects of
simplifications could be important for scheduling in commercial routers, however, the
simplified model captures the essence of packet life time and provides a non-trivial
and basic setup.

Tra�c Synthesizer

The dynamics of each packet flow is modeled as poisson process with certain rate �i,
correspondingly, the time intervals between successive arrivals follow exponential
distribution. Hence, packet arrivals at the edge ingress link is a superposition of n

29

4 Evaluation

mutually independent poisson process, with parameter � =
P

n�1
i=0 �i. However, each

output link is not exactly the same as M/M/1 queue. Though it is assumed with
constant packet size for each flow and constant processing speed at each transmission
link, the transmission link is not necessarily work-conserving and scheduler does not
necessarily follow FIFO policy. Hence, the service time does not follow exponential
distribution.

Evolution

The construction of environment dynamics generally follows the methodology of
event-driven simulation [23,31]. The scheduler maintains a time-variant event list
L = {(ki, ei)}, 0  i  Ns�1 . . . which consists of the feasible event set �(s) together
with associated clock value ki at each simulator state. Such collection of key-value
pairs are represented as priority queue and stored in the form of array-based binary
heap [33,81]. The event set is abstracted with E = {enquque, dequeue, evict, sink}

in which enqueue, dequeue, evict, sink events could be triggered at di↵erent locations
of the network. The scheduler determines the triggering event e

0
= argmin

i2�(s) ki.

The environment evolves to the next state s
0
= f(s, e

0
), s 2 S with the advance of

system clock t
0
= t+ k

⇤ where k
⇤ = argmin

i2�(s) ki and accompanying update of L.
The simulation is terminated based on the predetermined criteria.
More generally, the agent is dealing with dequeue event pulses, unlike typical

reinforcement learning practices which assume a quantum time in the environment
dynamics. With packet scheduling context, assuming a minuscule time step, e.g.,
time to transmit 1 byte, will overwhelm the scheduler by a huge number of void
triggering, while presuming a more coarse grained time step, e.g., time to send 100
bytes would lead to numerous fragmentations and idle behaviors.

4.2 Learning Scheduling Policies

4.2.1 A Generic Example

Configurations

We assume K = 10 queues, and feed the agent with per-flow states including
front packet size (Bytes), time of arrival of front packet (seconds), flow priority,
flow size (Bytes)1, remaining flow size (Bytes), binary feature indicating presence
of the bu↵er, scheduling decision log, virtual finishing round, and deficit of each
queue, which counts up to 9 features, corresponding to 9 1D-CNNs in the policy
network, as shown in the Figure 4.1 visualization with Tensorboard flashlight. To
exploit the auto di↵erentiation mechanism of Tensorflow, the policy gradient loss
is defined as the cross-entropy, same as the loss defined in maximum likelihood

1Though accurate flow size information is hard to obtain in many network scenarios [17]

30

4.2 Learning Scheduling Policies

JML(✓) =
1
N

P
T

i=1

P
T

t
log ⇡✓(ai,t|si,t), but weighted by the advantage rollout. Huber

loss is applied as an alternative of clipped squared loss for the value network.

Figure 4.1: Tensorboard Visualization of Policy Network

We simulate the workload in which the characteristics of each flow are uniformly
picked from corresponding pools in order to sweep uniformly. Specifically, number of
packets for each flow ranges from 100 to 500, packet length ranges from 50 bytes to
500 bytes, flow priority is randomly assigned from 0 ⇠ 9, starting time 10�10

⇠ 10�5s,
transmission speed 1Gbps, link utilization ranges from 80% to 150% and relative
share among flows ranges 1 ⇠ 4. Random seed is set to 2018 unless otherwise stated.
Across all the experiments, we adopt the same set of hyper parameters of the agent,

in which reward decay � = 0.9, kernel size F = 3, number of filters K = 4, stride
S = 1, zero padding P = 1 (SAME padding), learning rates ↵ = 0.001, � = 0.001.
Such configurations yield approximately 23788 learnable parameters for policy
network and value network respectively.

Learning Curves

Since the agent will either collect reward 0 or 1 for the scheduling decision, the closer
the similarity to 100%, the more the closeness of the encoded policy is to the target
scheduling policy.

31

4 Evaluation

Figure 4.2: Learning curves for target policies during the primitive exploration.
Highlighted curve is the mean similarity achieved for the workload set
and the muted curve corresponds to the standard deviation.

32

4.2 Learning Scheduling Policies

We also test each learned policies under unseen examples, which is shown in
Figure 4.3. During testing, the agent makes deterministic decision with maximum
likelihood, with an extra mask [55] indicating valid queues.

FIFO 6P 6JF 6FF
6RPT RR

WRR
DRR

WDRR F4
6TF4

TDrJeW PROiFy

40

60

80

100

6i
P

iOD
ri

Wy
 [%

]

Figure 4.3: Generalization test with 500 workloads each with unseen samples, using
seed 12345.

Implications

From the results above, we observe that e↵ectiveness of learning degrade from type
one policy to policy three, since the observation is getting more partial and policy
logic is getting more sophisticated. Within specific type of target policy, state space
complexity also acts as an factor influencing the learning. For instance, the state
space of FIFO consists of continuous time stamp values, while for SP just labels
of limited values of priorities. Note that, the agent is fully model-free with no
knowledge a-priori, the hyper parameters are static across all experiments and are
not fine-tuned for specific settings. Hence, the primitive training results show that
the agent is able to adapt its behavior towards the intended policy.
Figure 4.3 shows that FQ is learned pretty well, however, given the assumption

that we provide with per-flow statistics of virtual starting time, the states maintained
by the switch when implementing FQ. It is therefore appealing to ask, considering the
prohibitive cost of maintaining these statistics which a✏icts the FQ implementation
in reality, can we actually learn FQ without such input? Unfortunately, theoretically
we can’t exactly learn such FQ without the input of internal states. The policy
encoded by the agent is simply a computing graph mapping observations to the
probabilities of discrete actions. If there is deterministic mapping of agent state
to scheduling decision for the target scheduling policy, the policy could be learned
and encoded with 100% theoretically, otherwise, the best outcome is to reach a
probabilistic policy that approximates the policy. If without the per flow statistics

33

4 Evaluation

maintenance, which is the input for the FQ implementation, the same input of the
agent will corresponds to multiple possible list of FQ input, such one-to-multiple
mapping will lead to non-deterministic encoded policies of the agent. However,
with FQ, such logic is deterministic, hence, theoretically, it is not possibly learn
exactly the specific policy unless the agent input is one-to-one mapping of the target
policy. Same arguments apply to DRR as well which maintains a per flow deficit
list. However, it is interesting to ask instead if we could explore a fair share policy
by the systems itself to approximate the goal without maintaining the state being
expensive in implementation.

4.2.2 Discussion

Replayability

In section 4.2.1, we demonstrates that the agent is able to adapt its behavior
with uniform internal structure to di↵erent target scheduling policies. We define
the criteria of similarity as sanity check. However, in network scenarios, previous
decisions will trigger cascading e↵ects on the following states of the environment.
Hence, we are interested into observing the closeness of learned policy to the target
scheduling from network perspectives given such temporal impact. We take learned
FIFO model as an example to evaluate the degree of replayability. As seen in
Figure 4.4, the percentage of packets overdue increases as link utilization grows,
since with sparse tra�c, the cascading e↵ect could be alleviated.

70 90 110 130 150

UtiOi]ation [%]

0.0

2.5

5.0

7.5

10.0

2
ve

Ud
ue

 3
eU

ce
nt

ag
e

[%
]

Figure 4.4: Fraction of packet overdue with various link utilization evaluated with
500 episodes, using random seed 12345.

Sequence Comparison

There are alternatives for learning existing approaches. To the extreme, if the target
systems is fully a white box, we could rely on supervised learning that could even

34

4.2 Learning Scheduling Policies

−5 −4 −3 −2 −1 0 1 2
GDp to Due 7ime [us]

10−4

10−2

100

C
D

F

70%
90%
110%
130%
150%

Figure 4.5: Cumulative distribution function for due gap of output packet sequences
with various link utilization.

boost the training e�ciency since the signal provides the exact label of correct action
and is less noisy. Such e↵ectiveness holds especially for learning policies where the
agent has full access of the inputs of target policy, however, this comes at a cost of
collecting exactly the decision trajectories of the target system. In reality, we are
also interested if we have only access to the input and output for a real-world system
with internal dynamics unknown. In this case, rewards are given by comparing the
output packet sequence and positive rewards are directed to actions that lead to
packets meeting the due. This could be useful for learning target policies where the
agent has only access to partial observations. As an example, we let agent learns
via both methodology without the input of per-flow virtual finishing round which is
used to calculate FQ scheduling decisions. We evaluate two learned policies with
the same trace sampled with a di↵erent random seed 12345. We observed that the
percentage of packets meeting the due with sequence comparison approach is slightly
better, corresponding to 82.72± 4.78% and 80.43± 8.96%.

Performance of Baseline

In order to reduce the variance, we adopt the practice of adding a bias-free state-
dependent baseline that predicts v⇡(s) = E ⇡[Gt|st = s] and evaluates the relative
quality of the action compared with the average. Figure 4.6 compare the performances
between the case with and without a state value baseline, using the case of learning
FIFO.

As seen in Figure 4.6, the addition of baseline not only reduces the variances but
also increase the exploration e�ciency. The main reason is that while improving
the policy, the loss is computed as the cross entropy multiplied by the advantage
instead of the raw cumulative return. The action that yields ”high” reward in an
absolute sense can be below the baseline which will be treated with penalty while
in the raw policy gradient, it is considered as a reinforce as well, which su↵ers the
exploration with more variances.

35

4 Evaluation

0 2500 5000 7500 10000 12500 15000 17500 20000
ESisode

25

50

75

100

Si
m

ila
ri

Wy
 [%

]

WiWhouW %aseline
WiWh %aseline

Figure 4.6: Performance of the state-dependent baseline in the FIFO example. Both
scenarios share the same driven traces and hyper parameters except the
baseline. Both curve is the moving average with window size 10 of raw
reward curve.

N 1 (128) 2 (128-64) 3 (128-64-32) 4 (128-64-32-16)

⌘explore (%) 96.48± 2.92 98.79± 1.05 99.01± 0.85 99.36± 0.57
⌘exploit (%) 98.07± 1.84 99.15± 0.94 99.47± 0.65 99.52± 0.59

Table 4.1: Sensitivity of performance with respect to hyper parameters in network
architecture.

Representation Architecture

In the example, we take the 1D CNN to locally filter the feature along the dimension
of flows. Though we did not fine tune the parameters of the agent structure, it is
still of interest that how would parameters tuning impact the result. We adopt the
practice to sweep the hyper parameters for the architecture to observe its impact [55].
We vary the number of hidden layers N , in which the number of neurons are adjusted
in tandem, for example, with 2 hidden layers we have 128-64. Table 4.1 shows that
the addition of layer complexity could help increase the marginal performance.
However, it is worth mentioning that there is a great deal of room for improving
further (e.g., stacking more layers, testing other NN variants) and our prototype
focuses mainly on the feasibility.

4.3 Exploring Custom Policies

We synthesize flows based the realistic trace distribution [19]. We found that
exploring directly the optimal policy to minimize the queueing delay is hard for
the agent given such partial observation. Besides, with Policy Gradient, it is risky
when at some point the agent moves towards a bad policy, which will collect bad
experiences and stuck at a worse policy.

36

4.4 Practical Viewpoint

102 103 104

Flow Si]e [Bytes]

0.0

0.5

1.0
C

D
F

EDU2

Figure 4.7: Flow Size Distribution of the Synthesized Trace

Hence, we leverage PPO to control the degree of policy change, with policy learning
rate 0.0001, and critic network learning rate 0.001. We bootstrap the agent with 500
iterations trying to learn to be work-conserving and shortest job first. With both
exploration pipelines, the agent explores the policy that is close to SJF, the optimal
canonical policy in a single link.

Figure 4.8: Exploration Curve with Proper Bootstrap

4.4 Practical Viewpoint

Although this work is actually looking at a prototype of queue management without
actually diving into concrete real-world system implementation, we discuss several
practical implications for future deployment.

37

4 Evaluation

4.4.1 Limitation

Scalability

We assume the agent is dealing with maximum 10 queues at the same time, others
could be backup in the backlog. Yet in reality, there is need to augment such capacity,
especially for core switches. As a proof of concept, we run a series of FIFO example
with fixed wall clock time 120 hours (including the time burden of corresponding
simulation) and single CPU core (moving to parallel implementation or GPU could
accelerate the process), as shown in Figure 4.9.

10 20 50
Queue 1umber

0

50

100

Si
m

ila
ri

ty
 [%

]

Figure 4.9: Training benchmarks obtained with limited 120h wall clock time and
single CPU core for di↵erent queue numbers.

With the increment of queue capacities, the complications come in several di-
mensions. First, the policy network will need to be augmented with more output
neurons and corresponding addition of neurons in the hidden layer to adjust the
capacity of the model, which indicates we need more training epochs. Besides, the
agent also has to deal with longer horizon if more scheduling steps could be involved
in an episode. Though scaling to a larger magnitude could be feasible, but the
accompanying cost might be prohibitively expensive. To illustrate, the recent work
on OpenAI Five indicates the feasibility of exploring tasks with a long horizon, large
discrete action space. They managed to deal with an action space of magnitude
1000 simultaneously and a horizon of 80000 ticks, yet at a heavy cost of 256 GPUs,
128000 CPU cores corresponding to around 180 years per day [10].

Real-time Constraint

In the simulation, we do not account for the processing time of deriving scheduling
decisions, however, in real-world systems, the agent has to make timely decisions.
Hence, we measure the processing time to make a single dequeue decision (i.e.,
inference) using the learned model with Tensorflow CPU module and 2.9 GHz Intel
Core i7, as shown in 4.10.

38

4.4 Practical Viewpoint

FIFO SP SJF SFF
S5PT 55

W55
D55

WD55 FQ
STFQ

0.0

0.5
L

DW
eQ

Fy
 [P

s]

Figure 4.10: Processing delay of making single dequeue decision for each learned
policies with 105 measurements respectively. The bar indicates the
mean, upper quartile Q3 and lower quartile Q1.

For packet scheduling, 0.5 ms will corresponds to scheduling 62500 Bytes of data
with 1Gbps egress link, during which around 80% of the short flows would vanish in
traces like EDU2 shown in 4.7, let alone a single packet. Though the computation
time is model specific as well as platform dependent and machine learning specialized
hardware might alleviate the issue, the result reveals the potential concern of the
real-time constraint in magnitudes when deploying machine learning computing
model online, especially for line-rate frequent decision making.

4.4.2 Implications

The evidence shown above indicates the limitations and boundaries when we try to
apply such paradigm into real-world systems. For real-time applications, we also
have to consider the constraints on the frequency of making decisions. Besides, this
work we mainly look at the line-rate interface of scheduler mainly because we want
to be consistent with canonical approaches, however, with packet scheduling context,
augmenting intelligence directly on current core switches is not feasible and ready for
wide deployment due to the overwhelming cost of maintaining dynamic, large-volume
pre flow statistics and incompatibilities to machine learning computation complexity.
Given the current router technology which supports only a simple priority queue

based policy, it is more realistic to look at alternative interfaces with proper dis-
tributed design to reduce the overhead. Echoing the end-to-end argument [72], it is
appealing to instead augment intelligence at the edges to cooperate with core devices.
One typical example is Core Stateless Fair Queueing (CSFQ) [91], which decomposes
a group of routers into hierarchies of edges and core routers and transfers the burden
of maintaining per flow statistics to edge routers. Core routers is deployed with a
simple policy (e.g., SP) for line-rate decision making while the edges makes decision
on tagging the flows. By tagging the packets with fix range of priorities, we could
fix the core routers with commercial priority queue scheduling.

39

5 Conclusion

5.1 Summary

In this work, we focus on the viability of augmenting systems ability to adaptively
learn from its experiences in order to tailor for the specific settings. We have
shown the promising potentials of learning approaches in systems with the case of
packet queue management that could clone the existing policies and explore the
policy end-to-end to meet certain objective. As apposed to conventional hardcoded,
explicitly defined commands, such agent paradigm could explore and exploit from
prior experiences on herself.

5.2 Future Work

This thesis is an early phase attempt to explore, identify, and understand the
challenges and opportunities to augment systems adaptiveness with behavioral
machine learning framework in response to the ever increasing heterogeneity and
complex environment. We are enticed by the promising benefits of bringing the
paradigm into implementation on real system platform. Towards this, there is a
broad spectrum of promising potentials to exploit further towards this direction in
the future.
From the systems point of view, we have to shift our paradigm to problem with

global scale and formulate corresponding design. How can we design such systems
that could meet the online requirements, e.g, making timely and robust decisions
with robust responsiveness under environment variations? How do we cope with
common security concerns, how do we ensure that the agent is not making disastrous
decisions and how shall we introduce fallback mechanism to control the risks? Besides,
with current hardware compatibilities, how can we position the decision making
components properly to enable incremental augmentation in commercial platforms?
How can we actually design such systems with minimal resource requirements in
large scale deployment? How to determine the point when it is necessary to retrain
the model catering to the new pattern of tra�c or even enable a fully online setting?
How would the agent perform when there are also many other objectives to explore,
e.g., fairness, deadline. Besides, though this work exhibits a strong preference on
model-free approaches, would it be better that we combine and benefit from the
model of traditional design wisdom as well? Can we exploit the temporal and spatial
locality in the scheme?

41

5 Conclusion

From the statistical perspective, applying machine learning mechanism into systems
domain is faced with specific challenges. To illustrate, systems online decision making
could be with long time horizon, sparse and delayed reward and so forth, which opens
the opportunities to exploit hierarchical reinforcement learning, inverse reinforcement
learning, transfer learning, neuro evolutionary methods and so forth. In order to
really trust and exploit the paradigm as an alternative of canonical approaches, it
is also of vital importance that we enable the learning process and policies to be
explainable from human administrators in a systematic manner.

42

Bibliography

[1] Alphago at the future of go summit. deepmind.com/research/alphago/

alphago-china/. Accessed: 2018-03-10.

[2] Alphago zero: Learning from scratch. deepmind.com/blog/

alphago-zero-learning-scratch/. Accessed: 2018-03-10.

[3] Ca↵e. caffe.berkeleyvision.org. Accessed: 2018-08-01.

[4] Deepmind ai reduces google data centre cooling bill by 40%. deepmind.com/
blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/.
Accessed: 2018-03-10.

[5] Euler cluster. scicomp.ethz.ch/wiki/Euler. Accessed: 2018-05-20.

[6] Leonhard cluster. scicomp.ethz.ch/wiki/Leonhard. Accessed: 2018-05-20.

[7] Mininet. mininet.org. Accessed: 2018-08-10.

[8] Mxnet. mxnet.apache.org. Accessed: 2018-08-01.

[9] ns-3. www.nsnam.org. Accessed: 2018-08-10.

[10] Openai five. blog.openai.com/openai-five/. Accessed: 2018-08-10.

[11] Pytorch. pytorch.org. Accessed: 2018-08-01.

[12] Tensorflow. www.tensorflow.org. Accessed: 2018-08-01.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016.

[15] O. Alipourfard, H. H. Liu, and J. Chen. Cherrypick: Adaptively unearthing
the best cloud configurations for big data analytics.

[16] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker. pfabric: Minimal near-optimal datacenter transport. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 435–446.
ACM, 2013.

43

deepmind.com/research/alphago/alphago-china/
deepmind.com/research/alphago/alphago-china/
caffe.berkeleyvision.org
deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
scicomp.ethz.ch/wiki/Euler
scicomp.ethz.ch/wiki/Leonhard
mininet.org
mxnet.apache.org
www.nsnam.org
blog.openai.com/openai-five/
pytorch.org
www.tensorflow.org

Bibliography

[17] W. Bai and K. Chen. Information-agnostic flow scheduling for commodity
data centers.

[18] M. Bartulovic, J. Jiang, S. Balakrishnan, V. Sekar, and B. Sinopoli. Biases in
data-driven networking, and what to do about them. In Proceedings of the
16th ACM Workshop on Hot Topics in Networks, pages 192–198. ACM, 2017.

[19] T. Benson, A. Akella, and D. A. Maltz. Network tra�c characteristics of data
centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 267–280. ACM, 2010.

[20] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas. Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA,
2005.

[21] H. M. M. S. S. Bojja and V. M. Alizadeh. Learning graph-based cluster
scheduling algorithms.

[22] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of
the trade, pages 421–436. Springer, 2012.

[23] C. G. Cassandras and S. Lafortune. Introduction to discrete event systems.
Springer Science & Business Media, 2009.

[24] L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: scaling deep reinforcement
learning for datacenter-scale automatic tra�c optimization. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communica-
tion, pages 191–205. ACM, 2018.

[25] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, and M. Pavone.
Cellular network tra�c scheduling with deep reinforcement learning.

[26] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A knowledge
plane for the internet. In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
3–10. ACM, 2003.

[27] J. Dean. Machine learning for systems and systems for machine learning.

[28] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In ACM SIGCOMM Computer Communication Review,
volume 19, pages 1–12. ACM, 1989.

[29] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain,
and N. Sutin. An argument for increasing tcp’s initial congestion window.

[30] N. Feamster and J. Rexford. Why (and how) networks should run themselves.
arXiv preprint arXiv:1710.11583, 2017.

44

Bibliography

[31] G. S. Fishman. Discrete-event simulation: modeling, programming, and analy-
sis. Springer Science & Business Media, 2013.

[32] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[33] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser. Data structures and
algorithms in Python. John Wiley & Sons Ltd, 2013.

[34] P. Goyal, H. M. Vin, and H. Chen. Start-time fair queueing: a scheduling algo-
rithm for integrated services packet switching networks. In ACM SIGCOMM
Computer Communication Review, volume 26, pages 157–168. ACM, 1996.

[35] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand,
and J. Crowcroft. Queues don’t matter when you can jump them! 2015.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[37] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, A. Eslami, M. Riedmiller, et al. Emergence of locomotion behaviours
in rich environments. arXiv preprint arXiv:1707.02286, 2017.

[38] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing flows quickly with preemp-
tive scheduling. In Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer communi-
cation, pages 127–138. ACM, 2012.

[39] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Unleashing the potential of data-
driven networking. In International Conference on Communication Systems
and Networks, pages 110–126. Springer, 2017.

[40] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[41] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

[42] A. Klimovic, H. Litz, and C. Kozyrakis. Selecta: Heterogeneous cloud storage
configuration for data analytics. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 759–773, Boston, MA, 2018. USENIX Association.

[43] D. Koller and N. Friedman. Probabilistic graphical models: principles and
techniques. 2009.

[44] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for
learned index structures. In Proceedings of the 2018 International Conference
on Management of Data, pages 489–504. ACM, 2018.

45

http://www.deeplearningbook.org

Bibliography

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[46] J. Kurose and K. Ross. Computer networking: A top-down approach. Cell,
757(239):8573, 2013.

[47] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436,
2015.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[49] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. E�cient backprop. In
Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[50] J. Y.-T. Leung. A new algorithm for scheduling periodic, real-time tasks.
Algorithmica, 4(1-4):209, 1989.

[51] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[52] Y. Liang, M. C. Machado, E. Talvitie, and M. Bowling. State of the art control
of atari games using shallow reinforcement learning. In Proceedings of the 2016
International Conference on Autonomous Agents & Multiagent Systems, pages
485–493. International Foundation for Autonomous Agents and Multiagent
Systems, 2016.

[53] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[54] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management
with deep reinforcement learning. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks, pages 50–56. ACM, 2016.

[55] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pages 197–210. ACM, 2017.

[56] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh. Variance
reduction for reinforcement learning in input-driven environments. arXiv
preprint arXiv:1807.02264, 2018.

46

Bibliography

[57] N. McKeown. Software-defined networking. INFOCOM keynote talk, 17(2):30–
32, 2009.

[58] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar,
M. Norouzi, S. Bengio, and J. Dean. Device placement optimization with
reinforcement learning. arXiv preprint arXiv:1706.04972, 2017.

[59] R. Mittal. Towards a More Stable Network Infrastructure. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2018.

[60] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker. Universal packet
scheduling. In Proceedings of the 14th ACM workshop on hot topics in networks,
page 24. ACM, 2015.

[61] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937, 2016.

[62] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[63] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, Feb. 2015.

[64] A. Y. Ng. Shaping and policy search in reinforcement learning. PhD thesis,
University of California, Berkeley, 2003.

[65] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems,
pages 4026–4034, 2016.

[66] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: the single-node case. IEEE/ACM
Transactions on Networking (ToN), 1(3):344–357, 1993.

[67] A. K. Parekh and R. G. Gallagher. A generalized processor sharing ap-
proach to flow control in integrated services networks: the multiple node case.
IEEE/ACM Transactions on Networking (ToN), 2(2):137–150, 1994.

[68] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic di↵erentiation in pytorch.
2017.

47

Bibliography

[69] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[70] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. nature, 323(6088):533, 1986.

[71] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864,
2017.

[72] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4):277–288, 1984.

[73] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Sced: A generalized schedul-
ing policy for guaranteeing quality-of-service. IEEE/ACM Transactions on
networking, 7(5):669–684, 1999.

[74] M. Schapira and K. Winstein. Congestion-control throwdown. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks, pages 122–128. ACM,
2017.

[75] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[76] L. E. Schrage and L. W. Miller. The queue m/g/1 with the shortest remaining
processing time discipline. Operations Research, 14(4):670–684, 1966.

[77] J. Schulman. Optimizing expectations: From deep reinforcement learning to
stochastic computation graphs. PhD thesis, UC Berkeley, 2016.

[78] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages
1889–1897, 2015.

[79] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[80] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[81] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley Professional, 4th
edition, 2011.

[82] M. Shreedhar and G. Varghese. E�cient fair queueing using deficit round
robin. In ACM SIGCOMM Computer Communication Review, volume 25,
pages 231–242. ACM, 1995.

48

Bibliography

[83] M. Shreedhar and G. Varghese. E�cient fair queuing using deficit round-robin.
IEEE/ACM Transactions on networking, 4(3):375–385, 1996.

[84] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

[85] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

[86] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

[87] S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft
state aggregation. In Advances in neural information processing systems, pages
361–368, 1995.

[88] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Pro-
grammable packet scheduling at line rate. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 44–57. ACM, 2016.

[89] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan. An experimental
study of the learnability of congestion control. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 479–490. ACM, 2014.

[90] K. O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127, 2002.

[91] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: Achieving
approximately fair bandwidth allocations in high speed networks, volume 28.
ACM, 1998.

[92] I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney, R. Katz, A. D.
Joseph, M. Jordan, J. M. Hellerstein, J. E. Gonzalez, et al. A berkeley view of
systems challenges for ai. arXiv preprint arXiv:1712.05855, 2017.

[93] R. S. Sutton and A. G. Barto. Reinforcement Learning : An Introduction.
MIT Press, 1998.

[94] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pages 1057–1063, 2000.

[95] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, et al. Going deeper with convolutions.

49

Bibliography

[96] A. Tanenbaum. Computer Networks. Prentice Hall Professional Technical
Reference, 4th edition, 2002.

[97] J. N. Tsitsiklis and B. Van Roy. Analysis of temporal-di↵ference learning with
function approximation. In Advances in neural information processing systems,
pages 1075–1081, 1997.

[98] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database
management system tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on Management of Data,
pages 1009–1024. ACM, 2017.

[99] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with
double q-learning. In AAAI, volume 16, pages 2094–2100, 2016.

[100] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica. Ernest:
E�cient performance prediction for large-scale advanced analytics.

[101] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

[102] R. J. Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. In Reinforcement Learning, pages 5–32. Springer,
1992.

[103] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than
late: Meeting deadlines in datacenter networks. ACM SIGCOMM Computer
Communication Review, 41(4):50–61, 2011.

[104] K. Winstein and H. Balakrishnan. Tcp ex machina: computer-generated
congestion control. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 123–134. ACM, 2013.

[105] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz.
Selecting the best vm across multiple public clouds: A data-driven performance
modeling approach. In Proceedings of the 2017 Symposium on Cloud Computing,
pages 452–465. ACM, 2017.

[106] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[107] L. Zhang. Virtual clock: A new tra�c control algorithm for packet switching
networks. In ACM SIGCOMM Computer Communication Review, volume 20,
pages 19–29. ACM, 1990.

50

A Appendix

A.1 Installation and Configuration

Install relevant python3 packages.

pip install --upgrade pip

pip install --upgrade setuptools

pip3 install -r dependencies.txt

Configure and test the project.

under {user-prefix}/src folder.

root_dir=$(pwd)

if ["$(uname)" == "Darwin"]; then

echo "export ROOT_DIR="$root_dir>>~/.bash_profile

source ~/.bash_profile

elif ["$(expr substr $(uname -s) 1 5)" == "Linux"]; then

echo "export ROOT_DIR="$root_dir>>~/.bash_rc

source ~/.bash_rc

fi

compile cython

rm -rf **/*.{c,so}; rm -rf *.{c,so};

python3 setup.py build_ext --inplace

run modules test

. ${ROOT_DIR}/caller/test.sh

A.2 Reproduction of the Results

A.2.1 Learning Scheduling Policies

Choose or create one’s own configuration file in ${ROOT_DIR}/config/ and include
it as the argument of the target launcher. E.g., train the agent towards a target
scheduling via evaluative feedback with lrps train.py configuration.

python3 launcher/exec_lrps.py -w remote run lrps_train -lp ./tmp/semi/train/

Evaluate the approximate models with an unseen workload set.

python3 launcher/eval_lrps_mp.py -s 12345 -n 100 -t semi

51

A Appendix

Let the agent to learn a blackbox scheduling behavior with lrps train se.py configu-
ration.

python3 launcher/exec_lrps_se.py lrps_train_se -lp ./tmp/se/train/ -eid 0

Visualize the tensorflow computation graph with tensorboard:

tensorboard --logdir=${ROOT_DIR}/tmp/model/ --host=0.0.0.0

${ROOT_DIR}/caller/ stores the scripts to automate series of the experiments
for reproduction.

A.2.2 Exploring Custom Policies

Expose the agent to explore a customized policy for a specific objective with
exps explor.py configuration.

python3 launcher/exec_exps.py exps_explor -lp ./tmp/exps/train/ -eid 0

52

www.kth.se
TRITA-EECS-EX-2019:61

	1 Introduction
	2 Background
	2.1 Deep Reinforcement Learning
	2.1.1 Framework
	2.1.2 Approximate Solution
	2.1.3 Value Optimization
	2.1.4 Policy Optimization
	2.1.5 Actor-critic

	2.2 Packet Scheduling
	2.2.1 Network Data Transmission
	2.2.2 Local Packet Processing
	2.2.3 Canonical Approaches

	2.3 Computational Framework
	2.4 Related Work
	2.4.1 Canonical Scheduling
	2.4.2 Machine Learning for Systems

	3 Design
	3.1 Motivation
	3.2 Abstraction
	3.2.1 Elements
	3.2.2 Formulation

	3.3 Agent Structure
	3.3.1 Interface
	3.3.2 Representation
	3.3.3 Internal Machinery

	3.4 Learning Scheduling Policies
	3.4.1 Formulation
	3.4.2 Taxonomy
	3.4.3 Methodology

	3.5 Exploring Custom Policies
	3.5.1 Formulation
	3.5.2 Reward
	3.5.3 Methodology

	4 Evaluation
	4.1 Simulator
	4.2 Learning Scheduling Policies
	4.2.1 A Generic Example
	4.2.2 Discussion

	4.3 Exploring Custom Policies
	4.4 Practical Viewpoint
	4.4.1 Limitation
	4.4.2 Implications

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	Bibliography
	A Appendix
	A.1 Installation and Configuration
	A.2 Reproduction of the Results
	A.2.1 Learning Scheduling Policies
	A.2.2 Exploring Custom Policies

