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Abstract
Network applications from traffic engineering to path trac-

ing often rely on the ability to transmit fine-grained telemetry
data from network devices to a set of collectors. Unfortu-
nately, prior work has observed—and we validate—that ex-
isting transmission methods for such data can result in sig-
nificant overhead to user traffic and/or loss of telemetry data,
particularly when the network is heavily loaded.

In this paper, we introduce InvisiFlow, a novel commu-
nication substrate to collect network telemetry data, silently.
In contrast to previous systems that always push telemetry
packets to collectors based on the shortest path, InvisiFlow
dynamically seeks out spare network capacity by leveraging
opportunistic sending and congestion gradients, thus mini-
mizing both the loss rate of telemetry data and overheads on
user traffic. In a FatTree topology, InvisiFlow can achieve
near-zero loss rate even under high-load scenarios (around
33.8× lower loss compared to the state-of-the-art transmis-
sion methods used by systems like Everflow and Planck).

1 Introduction
Network management and monitoring tasks often rely on
fine-grained telemetry data to empower network administra-
tors and systems with insight into current conditions [1–3].
For instance, when monitoring for failures and other network
anomalies, switch telemetry enables the detection of unusual
traffic patterns, errors, or drops [3–5]. Similarly, when opti-
mizing or provisioning the network, administrators can an-
alyze trends in traffic volume, bandwidth usage, and port
utilization to make decisions [6–9].

Recent research has provided compelling arguments in fa-
vor of expanding the scope and diversity of collected telemetry
data. Rationales vary. Some researchers note a reduction in
the timescales of congestion events and its impact on the gran-
ularity required to observe them [10–12]. Others propose en-
hanced measurement capabilities enabled by modern network
devices that can capture buffer statistics, sketches, per-QoS
counters, and more [13–16]. Still, others advocate for the
advantages of per-packet in-band metrics [17–19], and some
suggest increasing telemetry to strive for the highest levels of
availability and Service Level Objectives (SLOs) [20–22].

Regardless of the reason, high volumes of telemetry data
produced at switches are typically collected at machines
placed throughout the network that are responsible for process-
ing, collating, analyzing, and storing the gathered data [1,3–5].
The traditional method used to send telemetry reports (e.g.,
in [23]) routes them as standard data packets that can impact

user traffic. For example, in §2, we observe increases in user
traffic flow completion time of up to ≈19%, which affects
latency-sensitive workloads. Techniques like In-band Net-
work Telemetry (INT) [18], In-situ Flow Information Teleme-
try [24], and Broadcom’s IFA [25] that embed data directly
into user packets impose similar overheads [19].

Acknowledging this issue, recent work has tried to reduce
overheads on user traffic by sacrificing the completeness of
the telemetry data. One approach is exemplified by systems
like [19, 26] that reduce telemetry’s frequency and/or volume
through approximation, saving some bandwidth but at the
cost of information loss. When tracing paths of flows, for
instance, PINT [19] will miss path changes for small flows
(large flows as well under flowlet routing). Even when incom-
plete/approximate data is sufficient, the data is still eventually
transferred across the network, incurring the associated over-
heads of those transmissions. Another approach is taken by
systems like [21, 27–30] that de-prioritize telemetry traffic in
favor of user traffic. This solution, however, risks starvation
and telemetry loss when links are shared. The loss can affect
the accuracy/utility of monitoring applications that rely on
the data. For instance, our benchmark of a path tracing utility
missed around 11% of paths under this strategy (§2).

In this paper, we aim to design a novel communication sub-
strate for telemetry data that provides both (a) high sustain-
able throughput (i.e., throughput given the constraint of zero
loss) and (b) little-to-no impact on user traffic. We present
InvisiFlow, a new mechanism to isolate telemetry data from
user traffic. InvisiFlow is agnostic to both the content of
the telemetry data and the network’s topology; consequently,
it can be used as a drop-in replacement for many existing
monitoring systems.

The main insight behind our work is that exploring unused
network bandwidth using congestion gradients maximizes
sustainable throughput and minimizes the external impact of
telemetry traffic—similar in spirit to water always flowing
toward a lower elevation, telemetry packets are sent along the
gradient to neighbors with lower congestion and more space
in their telemetry buffers. To tackle challenges in applying
existing theory on congestion gradients (§3.2) to practical
environments, InvisiFlow constructs a pull-based transmis-
sion channel in which network switches frequently send low-
priority pull requests to their physical neighbors that quantify
the amount of telemetry congestion at each node, and utilizes
shared pipelines in switches to support the late-binding of
egress ports based on telemetry buffer usage.



We implement a hardware prototype1 of InvisiFlow on a
commodity switching ASIC with P4 programmability. With
testbed experiments on a leaf-spine topology, we demonstrate
that InvisiFlow can efficiently explore available network band-
width to simultaneously prevent impact on user traffic and
loss of telemetry data, even under high load. In contrast, base-
lines based on the communication protocols of state-of-the-art
telemetry systems exhibit drop rates of >80% when prioritiz-
ing user traffic on the same workload. Simulation results on
larger networks and a range of workloads, network applica-
tions, and topologies show that InvisiFlow remains resilient
and effective across a wide range of scenarios. Specifically,
InvisiFlow can improve the accuracy of prior systems in per-
flow accounting approximation (i.e., ApproSync [31] with
Count-Min sketches [32]) up to 22.5×.

2 Background and Motivation
We begin by briefly summarizing existing telemetry data trans-
mission systems and their limitations.

2.1 Telemetry Data Transmission
Network operators design and deploy systems to collect
data from the network, including host/switch counters, flow
records, and log information. While some systems ingest and
exploit such data locally [8, 33], most of the time, operators
need to collect the data at centralized databases/repositories
for subsequent processing, storage, and analysis to provide a
comprehensive view of the network [34, 35].

These modern telemetry systems—regardless of their target
data—share a high-level workflow, depicted in Figure 1. The
systems comprise three major components. The source can
reside on any network device (e.g., switches, routers, or end
hosts), encompass any target data (e.g., SNMP port utilization
counters, drop notifications, or NetFlow records), and may
be generated at any interval, periodic or event-based. A set
of collector sinks receive, process, and store this telemetry.
Monetary incentives typically imply that the number of col-
lectors is small compared to the number of devices (e.g., <
1% as shown in Everflow [28]) and that they must aggregate
telemetry data from multiple devices.

Between the above two components is a transmission
channel, responsible for forwarding telemetry packets from
sources to collectors (which is the focus of this paper). We
note several requirements for this transmission channel:
(R1) High/full sustainable throughput for telemetry data.
As the mechanism responsible for delivering telemetry data,
network applications depend on this channel to provide high
throughput with minimal loss of data. Finer-grained telemetry
data allows network operators to make more informed deci-
sions [10] and provide better services to end users; data loss
can result in incomplete or inaccurate insights [30].

1Code is available at https://github.com/eniac/InvisiFlow.

Telemetry source(s)

Transmission 
channel

Collector sink(s)

Example
Sampled counters (e.g., SNMP)

Sketches (e.g., HeteroSketch)

Example
Embed data to header

TCP, UDP

Figure 1: Workflow of a typical telemetry system.
(R2) Minimal impact on user traffic. Telemetry data often
shares the same network with user traffic [19, 26, 29] as this
can lead to more efficient resource utilization and beneficial
fate-sharing properties [21]. While doing so, it is crucial to
avoid introducing excessive latency, packet loss, or conges-
tion due to the telemetry data transmission process, which
may degrade the quality of service for user applications. As
discussed in [19], this overhead can lead to up to 20% degra-
dation of application-level throughput and a corresponding
25% increase in flow completion time.
(R3) ASIC-implemented operation. Finally, while early
switches and routers often punted all non-forwarding tasks
(including telemetry) to the switch CPU, growing telemetry
granularity and ASIC capabilities have led to heavier reliance
on data planes to both generate and send telemetry data [19,
27–30]. In particular, data planes can collect and export data
at much higher resolution and power efficiency than CPUs.
This trend toward data plane implementation is visible in
line-rate monitoring systems like INT [18] and Broadcom’s
IFA [25], but it is also increasingly true for classic, decades-
old telemetry systems like NetFlow and sFlow [36, 37].

2.2 Existing Solutions and Limitations
We note that recent work [14, 15, 19, 26, 38, 39] that seeks to
reduce the size of collected data at the telemetry source (en-
compassing techniques like sampling, sketching, and encod-
ing) can mitigate some of the above challenges; however, they
are not a panacea. First, these solutions often sacrifice gener-
ality for the required bandwidth, limiting their applicability to
specific applications and types of telemetry tasks. The approx-
imation can also introduce significant errors in higher-layer
analysis [5]. For example, applying PINT [19] to path tracing
and the Hadoop workload [40] of §6 can limit bandwidth over-
heads to <2% compared to a configuration without telemetry
but will miss path records for >60% of flows that are too
small to track. Finally, regardless of whether the techniques
are applicable/acceptable, enhancing the underlying transmis-
sion channel can mitigate the degradation in the accuracy of
higher-layer applications and its impact on user traffic.

We, therefore, focus on the orthogonal problem of teleme-
try transmission. In this subsection, we examine the channels
used by existing systems in the context of the above require-
ments. Per R3, we look only at data-plane solutions, of which
current systems take one of the following two approaches.

https://github.com/eniac/InvisiFlow
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Figure 2: Tradeoffs between different prioritization meth-
ods for the telemetry transmission channel under the path
tracing application. FCT dilation is an average over ap-
plications in the same rack as a collector.

Embedding data into packets. One way to transmit teleme-
try data is to embed data directly into user packets [18, 19,
26, 41]; end-host receivers are responsible for extracting the
telemetry data from these packets and sending it to collectors.
Unfortunately, as others have noted and we discussed in R2,
embedded data can introduce substantial overheads [19]. For
example, for small packets, adding additional data to packets
can increase transmission times by a large relative proportion,
increasing load on the network. For large packets, reserving
header bits or reducing MTU sizes to prevent fragmentation
incurs a tax on every packet, regardless of whether real data
is embedded or not.
Generating packets and sending them directly. The other
approach is to generate dedicated packets that are sent to
collectors directly [27–30, 36, 42, 43]. These systems typi-
cally layer on top of existing protocols like UDP, which is
preferable to TCP due to the impracticality of implement-
ing end-to-end reliability in the data plane [44]. By sending
telemetry data as datagrams separate from user packets, these
systems can better control the rate and overhead of telemetry
data transmission.

However, managing the tradeoff between the throughput of
the transmission channel (R1) and its impact on user traffic
(R2) can be challenging. Aside from generating less teleme-
try data, the primary knob to tune the overheads of today’s
transmission channels is Class-of-Service packet prioritiza-
tion, where there are two primary options: (a) treat telemetry
and user packets equally or (b) send telemetry data with a
lower priority than user traffic.

Figure 2 categorizes a few popular telemetry systems along
this axis and illustrates the challenge of balancing sustainable
telemetry throughput and user-traffic overhead (measured via
FCT dilation). Results are presented for a FatTree data cen-
ter [45] using a Meta Hadoop workload [40] and a range of
average utilizations, as detailed in §6.1. We employ a path

tracing application similar to [5], where each switch main-
tains a record of user flows and forwards it to a collector for
path reconstruction. As seen in Figure 2, as load increases,
network operators are forced to choose between prioritizing
telemetry (and increasing the FCTs of collector-collocated ap-
plications by 19%) or prioritizing user traffic (and accepting
11% missing paths). As a preview of our results, InvisiFlow
can keep both minimal, even in a heavily loaded network.

3 Design Overview
In this paper, we present InvisiFlow, a communication sub-
strate for telemetry data transmission that can minimize the
network-wide loss rate of the telemetry data given the con-
straint of little-to-no impact on user traffic. As previously
mentioned, InvisiFlow is agnostic to the content of the teleme-
try data and the network’s topology. It also leaves user traffic
transmission untouched. As such, it can be used as a drop-in
replacement for many existing monitoring systems.

3.1 Opportunistic Gradient Forwarding
InvisiFlow is driven by two overarching design principles:
1. Prioritize user traffic.
2. Instead, seek out spare capacity, wherever it may be.
For the first principle and to satisfy R2, InvisiFlow keeps
telemetry and user traffic separate and ensures that all control
and telemetry packets are de-prioritized compared to user
packets. Although packet processing and transmission are
generally not preemptable in modern network devices, prior
work [21, 27] and our results in §6.3 show that proper config-
uration of priorities at every stage of modern network devices
can ensure that overheads are negligible, even when every
available gap between user packets is filled with lower-priority
packets. With these techniques, InvisiFlow can operate with
minimal impact on user traffic.

Instead, InvisiFlow seeks out spare network capacity for
telemetry data transmission, aggressively leveraging any such
opportunities. Over a decade of measurement studies on
large-scale networks have frequently observed low average
utilization in modern networks [10, 40, 46–48], with data
centers, for instance, sometimes seeing ∼5% average utiliza-
tion (comprised mostly of small bursts), even for supposedly
high-throughput applications like Hadoop and distributed ML
training. Telemetry, generally off the critical path of user-
facing requests, is a particularly good fit for leveraging the
opportunities provided by these gaps in sending.

InvisiFlow’s approach to finding spare capacity is based
on classic theoretical foundations regarding multicommodity
flows and the stability of queuing networks [49,50]. More for-
mally, given a network and a vector of flows with associated
sources, sinks, and arrival rates, a scheduling/routing policy
π is said to provide buffer stability if it satisfies the following.

Definition 1 (Buffer Stability). Let B(t) be the total amount
of packets remaining in the buffers at time t. Assume no



constraints on buffer size. The system is stable under π iff:

limsup
t→∞

1
t

t−1

∑
τ=0

E[B(τ)]< ∞ (1)

The alternative to buffer stability is a system where buffer
sizes grow to infinity. Note that it is often useful to define
scheduling policies that are robust to changes in arrival rates.
Prior work has termed this a problem of characterizing and
maximizing a policy’s stability region.

Definition 2 (Stability Region). Let g be the vector of the
packet arrival rates at all telemetry sources. Stability region
Sπ of policy π is the set of all g for which the system is stable
under π.

Results in max-weight scheduling theory [50] have shown
that transmission based on the congestion gradient can pro-
vide an optimal policy that maximizes the stability region and
sustainable throughput. The congestion gradient is defined as
the difference in telemetry buffer usage between neighboring
switches. Unlike traditional forwarding [51], where nodes
blindly push packets along the shortest path to the destina-
tion, for every pair of neighbors in congestion gradient-based
transmission, the one with a larger telemetry buffer usage
sends toward the one with a smaller buffer usage. This is
similar in spirit to water always flowing toward a lower el-
evation. These approaches have been found to be robust to
diverse topologies and dynamic arrival patterns. As with pri-
oritization, we argue that telemetry, typically amenable to
asynchronous and out-of-order delivery, is a particularly good
fit for our approach.

3.2 InvisiFlow Architecture
While InvisiFlow is inspired by the simplicity and efficacy of
prioritization and congestion gradient forwarding, the theory
is, of course, significantly different from practice.

(C1) How do we calculate the gradient over time and ad-
dress situations where the gradient itself is not known (e.g.,
because control packets are subject to prioritization behind
user traffic)? (C2) How do we address limitations in packet
processing pipeline structures for sending telemetry data, e.g.,
the need to specify an output port before egress availability
is known? (C3) How do we handle failures of both network
components and telemetry collectors? The primary challenge
of InvisiFlow is to develop practical solutions to the above
issues and others.
Components. The high-level architecture of InvisiFlow is
shown in Figure 3. It contains several types of components:
• Switches: To obtain the gradient (C1), every switch in the

network, when it has free capacity, will continually gen-
erate low-priority pull requests (with its current telemetry
buffer usage) and send them to all neighboring switches.
Neighboring switches will respond to this per-hop pull re-
quest if the other side’s buffer usage is lower. The current

Pull request: Telemetry data:
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Figure 3: Overview of an InvisiFlow-enabled network.

switch may also send packets if it would otherwise have
dropped data. To enable the late binding of egress ports
for telemetry data (C2), we store telemetry data in the
egress pipeline, which is shared by multiple egress ports,
as detailed in §4.1.

• Collectors: Telemetry collectors operate similarly to today,
ingesting and processing data as it arrives. In InvisiFlow,
they also act as true sinks in the congestion gradient, equiv-
alent to having a constant telemetry buffer utilization of
zero. This can be implemented by either the collector
sending pull requests on its own or via offload to its last-
hop switch [43]. In either case, telemetry data is naturally
drawn in from surrounding devices. InvisiFlow supports
sharding and backups of these devices and can support
flow control through an extension of the switch protocol.

• Available Servers: Finally, InvisiFlow supports optional
usage of spare server memory capacity, similar to [52,
53]. These also extend the per-hop pull protocol of the
switches, with their advertised utilization providing a knob
for tuning their usage. For example, advertising 80% usage
means that they will only be used when nearby switches
are >80% full. Configuring these servers is optional but
can be beneficial when there is a high load or failures of
either network components or telemetry collectors (C3).

Workflow. InvisiFlow creates a network where switches con-
tinually trade pull requests and telemetry data with their neigh-
bors in the gaps between microbursts of user traffic. Through
these gaps, InvisiFlow implements a variant of the edge-
balancing approach to approximating a maximal-stability-
region routing policy. As long as gaps exist, InvisiFlow will
leverage them to route telemetry packets. In the rare case that
one or both directions of a link are occupied for an extended
period, InvisiFlow will leverage congestion gradients to find
alternate paths and take risks when appropriate.

While inevitably not a perfect reproduction of the for-
malisms of results like [50] (e.g., due to the asynchrony of
pull requests), our extensive evaluation over a wide range of
topologies and workloads in §6 demonstrates that InvisiFlow
can—entirely in the data plane (R3)—maximize the sustain-
able throughput of telemetry data (R1) while incurring little-
to-no impact on user traffic (R2).
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Ethernet header: Ethertype identifies the InvisiFlow header.
DstGroupID: The destinations (collectors) group ID for the packet.
Payload length: The total length of the telemetry payload measured in bytes.
Buffer usage: The number of telemetry packets recorded in the telemetry buffer.
Telemetry payload: The telemetry data provided.

Figure 4: The packet format of InvisiFlow

Ethertype Egress port

Generated seed packet Multicast to all neighbors
Pull request Ingress port
Telemetry packet Free ports

Table 1: Default routing table used by the ingress pipeline.

4 The InvisiFlow Transmission Channel
In this section, we discuss the design of the InvisiFlow trans-
mission channel in detail. To keep our discussion general, we
assume (a) telemetry sources can be placed at arbitrary loca-
tions in the data plane and generate arbitrary amounts of data,
and (b) one or more collectors are placed in the network, any
of which can ingest that data. Note that InvisiFlow can also
support differentiated collectors and sharding (e.g., based on
hashing over a partition key) through a DstGroupID header
field and a straightforward extension to parallel transmission
channels, but we omit that discussion for simplicity.
Message format. The packet formats of InvisiFlow messages
are illustrated in Figure 4. There are two types of packets,
both gated by DstGroupID as mentioned above. Pull requests
are generated periodically and contain the current telemetry
buffer usage, which can be scaled to account for heteroge-
neous buffer allocations. Telemetry data packets are only sent
in response to received pull requests or upstream telemetry,
and they contain a variable-length payload. Both types of
packets are set to the lowest priority at every stage of the
pipeline, including the ingress arbiter, traffic manager, and
egress arbiter, per [21].

4.1 Switch Operation
The routing table for InvisiFlow’s ingress pipeline and the
pseudocode for egress pipeline processing logic are provided
in Table 1 and Algorithm 1, respectively.

An important building block of this logic is the gap-filling
low-priority packet generation mechanism introduced by the
OrbWeaver framework [21]. OrbWeaver uses the existing
per-pipeline packet generator capabilities of modern switches
to generate low-priority packets sent to all ports with config-
urable frequency and payload, with negligible impact on the
average power draw of the switch (<2%) and minimal worst-
case impact on pipeline bandwidth (<1.5%). Specifically, it
periodically generates ‘seed’ packets in the ingress pipeline

Algorithm 1: Egress logic for InvisiFlow packets.
Input: Packet P

1 switch Ethertype do
2 case generated seed packet do
3 Ethertype← ‘pull request’;
4 Set the buffer usage field;

5 case pull request do
6 if local.buffer_usage > P.buffer_usage then
7 Ethertype← ‘telemetry data’;
8 Pop telemetry from buffer and append it to P;
9 else

10 Set the buffer usage field;

11 case telemetry packet do
12 Store the payload in the local buffer;
13 Drop the packet;
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Figure 5: A potential lifecycle of a InvisiFlow packet. Cir-
cled numbers correspond to the steps in §4.1.

and then multicasts those seed packets to all egress ports, with
additional details in §5 and Appendix A. InvisiFlow uses this
mechanism to initiate pull requests, from which the rest of
the InvisiFlow protocol stems.

Another building block is InvisiFlow’s telemetry buffers in
the ingress and egress pipeline of every switch. These teleme-
try buffers are distinct from the traditional packet buffers used
by user traffic and managed by the ASIC; instead, SRAM
arrays are easier for data plane programs to manipulate. Note
that while both types of buffers are used to store telemetry
data, the egress buffer(s) of the pipeline(s) closest to the col-
lector(s) serves as the primary storage location. To see why,
consider a system that creates and appends telemetry data to
packets in the ingress. Packets must be assigned an egress port
in the ingress pipeline, but the fine-grained usage of any given
egress port can be difficult to ascertain, especially if multiple
pipelines may be sending to the same egress port. Storing
data in the egress instead enables late binding—whenever the
egress arbiter can schedule a low-priority telemetry packet
(destined for any port in the same pipeline), the next chunk
of data can be appended immediately before it is placed on
the wire. The ingress buffers are only used as a temporary



holding area for data that will eventually be transferred to the
egress pipeline.

Given these components, Figure 5 shows one potential
lifecycle of an InvisiFlow packet. For this packet:

1. The pulling switch generates/sends pull requests: As
shown in Table 1, every switch in the network will pe-
riodically generate seed packets and multicast them to all
neighbors. Before each copy leaves the egress pipeline, it
will be converted to a pull request with the current teleme-
try buffer usage as shown in line 2-4 of Algorithm 1.

2. The pulled switch replies to the pull requests: As shown
in Table 1, after receiving a pull request, the neighbor
switch sets the egress port equal to the ingress port to
return telemetry data. In the egress pipeline, the switch
compares the telemetry buffer size recorded in the pull
request with its local buffer size as shown in line 5-10 of
Algorithm 1. If the local buffer size is larger, the switch
pops telemetry data from the buffer and sends it back.
Otherwise, the switch reflects the pull request back to the
sender as its own.

3. The pulling switch processes the telemetry data: There
are two possible replies from the pulled switch: (1) If the
reply is still a pull request, the procedure remains the same
as described above. (2) If the reply is a telemetry packet,
we store the packet in the telemetry buffer at the egress
pipeline as shown in line 11-13 of Algorithm 1.

Example. Suppose a seed packet, denoted as p, is initially
generated by S1 and multicast to all neighbors in the ingress
pipeline. In the egress pipeline of S1, p is converted to a
pull request, p′ with its buffer usage field set to the current
telemetry buffer usage (e.g., 10). Upon receiving the pull
packet p′, the neighbor switch, S2, routes it back out the same
port. In the egress pipeline of S2, if the buffer usage (e.g., 20)
of S2 is larger than the buffer usage field in the pull request
p′, S2 pops telemetry data from the buffer and sends it back
to S1. Finally, S1 forwards the telemetry packet through free
ports and stores it in the buffer at the egress pipeline.

There are several important aspects and possible variations
of the above procedure.
Egress port choice and its impact on packet buffers. First,
we note that the choice of egress port of Table 1 and their
configurations in each branch of Algorithm 1 is deliberate.
Pull requests are valid for a single port and are reflected back
for egress handling. Because the seed and pulls are regener-
ated periodically, the loss of these requests is acceptable, and
the ASIC-level shared buffers for these packets can be shal-
low (i.e., enough for only a handful of outstanding requests).
Packets containing telemetry data should not be dropped as
readily, so InvisiFlow only sends them if capacity is guaran-
teed. It does so by using free ports (e.g., recirculation ports)
that are not typically used by user traffic, as shown in Table 1.
The advantage of using these ports is that it leverages higher
aggregate bandwidth within the switch and reduces the usage

of non-evictable packet buffers in the traffic manager.
Adding a slope to prevent zero congestion gradient. When
the network contains only a limited number of telemetry pack-
ets, there are potential issues where the congestion gradient
remains consistently at zero. Consider the scenario with only
one telemetry packet, p, sitting in switch S1. A neighbor,
S2, will pull p because it has lower telemetry buffer usage;
however, S1 now has less telemetry buffer usage than S2, so
there is a chance that p can oscillate between these switches.

To address the problem, we add a ‘slope’ to the congestion
gradient. Suppose the buffer usage of switch S1 is uS1. Switch
S1 can pull telemetry data from switch S2 if and only if uS1 +
δS1,S2 < uS2, where δS1,S2 indicates the slope. In InvisiFlow,
we set δ based on the distance to the collector. If switch S1
is closer to the collector than switch S2 as defined by the
routing protocol, then δS1,S2 = 0. Otherwise, δS1,S2 = 1. This
approach improves the directness of paths and ensures that
even when there is just one telemetry packet, it can efficiently
flow toward the collector without getting stuck.
Adjust the pulling rate based on local buffer usage. Ad-
justing the pulling rate is crucial to avoid pulling excessive
telemetry data, which could result in buffer overflow. In the
egress pipeline, InvisiFlow randomly drops generated seed
packets, with the probability of dropping packets equal to the
buffer usage. Moreover, if a switch’s buffer usage exceeds a
certain threshold (e.g., > 95%), it will revert to blindly push-
ing out telemetry packets to neighboring switches, as in prior
work [54]. While push-based sending carries risks for teleme-
try packets, extreme buffer usage suggests they would likely
have been dropped otherwise. We find that this approach
effectively prevents the loss of telemetry data, particularly in
scenarios with asymmetric bandwidth usage.

4.2 Server Operation
Two types of servers participate in InvisiFlow: those that col-
lect telemetry data and those that serve as temporary storage.
Collectors. To get telemetry data from switches, collectors
simply send pull requests to the network in the same manner
as switches. We set the buffer size recorded in the pull request
to 0. Based on §4.1, neighbor switches will send any available
telemetry packets in response to these pull requests. Note that
it also works if there are multiple collectors, and the telemetry
data will flow to any one of the collectors.

Note that collectors also have the option to not send pull
requests if, for instance, they lack sufficient CPU resources
or storage bandwidth to keep up with the current inflow. Al-
ternatively, collectors can offload the collection tasks to the
last-hop switch as in prior works [43], i.e., the last-hop switch
is responsible for generating pull requests and directly writes
the telemetry data to servers’ memory throughput Remote
Direct Memory Access (RDMA).
Available servers. To further minimize telemetry data loss,
InvisiFlow can optionally explore available memory/storage
in servers to store telemetry packets. We assume that the



Resource Baseline Marginal Increase

Gateway 11.46% 2.08%
VLIW Actions 4.69% 0.78%
Hash Bit 5.07% 0.46%
Exact Match Input xbar 3.58% 0.39%
Meter ALU 14.58% 0.00%
SRAM 1.77% 0.00%
Stages 7 0

Table 2: Additional H/W resources used by InvisiFlow.
Baseline is the low-priority UDP using OrbWeaver [21] to
generate telemetry packets.

memory/storage capacity in these available servers is much
larger than that of switches. Similar to collectors, available
servers join InvisiFlow by sending pull requests. The dif-
ference is that we set the buffer usage in the pull request to
a constant value α (e.g., 50%). These available servers can
pull telemetry packets from their neighboring switches if the
buffer usage of the switch is larger than α. Otherwise, the
neighbor switches pull telemetry packets from these available
servers. The setting of α determines the usage rate of the
memory/storage in available servers and the possibility of
data loss as shown in §6.2. A larger α may lead to a larger
possibility of data loss but a lower usage rate of the memo-
ry/storage in available servers, and vice versa. The available
servers can also dynamically adjust α based on their available
memory and leave enough space for user applications.

5 Implementation
We implement an InvisiFlow prototype on a testbed with
two Wedge100BF-32X switches. Servers are equipped with
a Mellanox ConnectX-5 100 Gbps NIC, dual-socket AMD
EPYC 7313 16-Core Processor, and 64 GB memory.
InvisiFlow servers. Per §4.2, each InvisiFlow-server (i.e.,
a collector or a free server) sends out pull requests if there
is available space and processes pull requests or telemetry
packets from the network. In our testbed, we implement the
collectors and free servers using DPDK (v21.11).
InvisiFlow switches. We implement InvisiFlow’s switch com-
ponent in P4-16. Our implementation leverages the built-in
packet generation and strict prioritization features present
in today’s switches. In total, the data plane implementation
consists of around 600 lines of P4 code. Our implementation
scales to today’s multi-pipeline switching architectures.

Egress pipeline register buffer for telemetry packets: Sim-
ilar to PayloadPark [55], we use an array of registers in the
egress pipeline to store telemetry packets. Due to the con-
straints on the number of stages and the number of bytes
read/written per stage, the size of telemetry packets should
be small (e.g., <160 B) as in [55]. This amount is sufficient
for most applications [5, 27, 28] and even allows for multiple
telemetry records within a single packet in many cases. Larger
telemetry messages can be handled with per-hop segmenta-
tion of telemetry packets. To improve the goodput of teleme-
try data, we omit the IP and UDP header and include only

Ethernet. Different EtherTypes distinguish different types of
packets, e.g., user packets, pull requests, or telemetry packets.

Switch-local teleport of telemetry data: Besides front-panel
ports, modern switches also have per-pipeline internal ports
for pktgen traffic and recirculation. InvisiFlow consumes the
bandwidth of one of these ports to move the telemetry data to
the egress pipeline, as discussed in §4.1. Note that InvisiFlow
does not recirculate any telemetry packets nor suffer from
recirculation overhead. The egress pipeline drops telemetry
packets from the ingress pipeline immediately after storing
the telemetry data in the egress pipeline register.

Hardware resource usage: Table 2 summarizes the key
resources required by our prototype. Compared with low-
priority UDP, which uses OrbWeaver [21] to generate low-
priority telemetry packets, the additional resource used by
InvisiFlow is small: 2.08% additional gateways and 0.78%
additional VLIW actions to process the telemetry packets.
The ALU and SRAM are mainly used to store and read/write
telemetry data in the egress pipeline.

6 Evaluation
We evaluate InvisiFlow using a combination of testbed exper-
iments and large-scale ns-3 simulations [56]. Our evaluation
focuses on the following three key questions.
• Can InvisiFlow minimize the accuracy degradation on the

telemetry application (R1)?
• Can InvisiFlow simultaneously minimize the overhead of

transmitting telemetry data (R2)?
• Is InvisiFlow robust to different settings and workloads?

6.1 Simulation Methodology
Topology and workload. We simulate a FatTree [45] topol-
ogy with 9 core switches and 4 pods that, combined, have 12
aggregation switches, 12 top-of-rack (ToR) switches and 144
servers. All links have a capacity of 100 Gbps, leading to a
4:1 oversubscription ratio similar to prior work [57–59]. The
propagation delay for all links is 1µs, resulting in a maximum
base RTT of 12µs. Switch buffer sizes are set proportionally
to the bandwidth-buffer ratio of Intel Tofino switches [60],
following prior research [58, 59]. Specifically, each switch
has approximately 2 MB of buffer for up to 600 Gbps of user
traffic and 170 KB for up to 50 Gbps of telemetry traffic2.
These buffers are shared by all ports on the same switch and
are fully isolated to prevent any impact on user traffic. For
DCTCP, we set K = 65 based on [59, 61]. User traffic is
load-balanced using ECMP over the 5-tuple.

Experiments are performed with one of two workloads:
a Hadoop workload (FB_Hadoop) and a machine-learning
(ML) workload. Details of the workloads can be found in
Appendix B. Unless otherwise specwified, FB_Hadoop is the
default setting.

2In experiments, the total telemetry data generated is generally <30 Gbps.



Stressed scenarios. In addition to the default setting, we intro-
duce two other scenarios to test InvisiFlow’s robustness.

• Load imbalance: We simulate a load imbalance scenario
caused by a faulty configuration, where ECMP is config-
ured to hash based only on the destination IP, which causes
packets to a single destination to use only one path, leading
to high load imbalance, as discussed in prior work [62].

• Asymmetric topology: We also stress the collector under an
asymmetric topology with failed fabric links [20, 63]. We
reduce the capacity of two links to 50 Gbps. These links
include a Core-Aggregation link and an aggregation-ToR
link, both toward the collector.

Telemetry sources, channels, and sinks. Next, we describe
the evaluated configurations of the three components of the
telemetry frameworks depicted in §2.1.
Sources: Four telemetry applications run concurrently be-
tween 20% and 80% of the simulation time.

• Path tracing (NetSeer [5]): Following [5], each switch
maintains a record of user flows passing through it. When
encountering a new flow, the switch stores the tuple (switch
ID, flow ID, TTL value) in its buffer. The collector uses
the TTL value to calculate the hop ID of each node and
reconstruct the entire path of each flow.

• Load imbalance detection (NetFlow [36]): Following [36],
every switch records the number of bytes passing through
each egress port in the data plane. The switch then stores
the tuple (switch ID, port ID, time, # of bytes) in the buffer
and reports the results (by default) every 5µs. The collec-
tor aggregates the byte counts to calculate each switch’s
load. It measures the load imbalance rate as the maximum
load relative to the minimum load among switches.

• Per-flow accounting (ApproSync [31]): We implement Ap-
proSync [31] with Count-Min Sketch (CMS) [32] to track
the size per-flow. In the CMS, we use 3 arrays of 217

counters per array. ApproSync sends sketches to the col-
lector by checking the divergence of each counter in the
sketch. Divergence is quantified using relative error, with
a threshold based on an expected bandwidth of 10 Gbps.

• Packet drop notification (NetSeer [5]): Similar to [5], when
a user packet drop occurs, the switch stores the tuple
(switch ID, flow ID) in the buffer.

Channels: We compare InvisiFlow (IF) with three communi-
cation substrates for telemetry data:

• Default-priority UDP: Prior telemetry systems like Net-
Flow [36], sFlow [42], and NetSight [29] often use default-
priority UDP to send telemetry data. We implement
default-priority UDP in postcard mode [29]: When there
is telemetry data to be sent, the switch generates a teleme-
try packet using mirroring and sends it to the collector.
Telemetry packets are assigned the same priority as user
traffic. If multiple shortest paths are available to the col-
lector, we use packet spraying [51] for load balancing.

• Low-priority UDP: Some telemetry systems like Ever-
flow [28] and Planck [27] assign low-priority to telemetry
packets to avoid impacting user traffic. To implement
low-priority UDP, we use OrbWeaver [21] to generate low-
priority telemetry packets. These packets are forwarded to
the next hop when there is available bandwidth. As before,
we use packet spraying if there are multiple shortest paths.
• Pull-based transmission: As an ablation study, we include

pull-based transmission without using congestion gradi-
ents. Each switch generates pull requests only to switches
farther from the collector, so that telemetry packets follow
the shortest paths. A switch pulls only when its telemetry
buffer usage is below 50%. We reserve some buffer capac-
ity to prevent overflow, as there could be locally generated
or late telemetry data due to low-priority transmission.

Sinks: In our experiments, one of the 144 servers is always
reserved as a collector server. When additional sinks are
required, they are taken from other clusters. We assume that
every switch is pre-configured with their addresses.

6.2 Telemetry Application Performance
This section compares the impact of InvisiFlow to alternative
communication substrates on telemetry applications, high-
lighting InvisiFlow’s ability to minimize accuracy degrada-
tion, particularly for low-priority transmissions.
Performance metrics. We consider the following metrics:
• Ratio of missing paths: Following [3], the collector reports

all paths it receives. If the collector fails to capture one or
more switch IDs along a path, we mark the path missed.

• Ratio of missing load imbalance events: We calculate the
ratio of missing events in core switches for load imbalance
detection as in [10]. A missed event occurs when the
collector cannot identify a period where the imbalance rate
at the core switches exceeds 2.

• Normalized relative error of the flow size: As in [31], all
core switches estimate the number of packets per flow
using sketches before sending them to the collector. To
quantify the impact of telemetry loss, we calculate the
average relative error of those estimates normalized to the
case without loss (i.e., we exclude errors introduced by
ApproSync and the Count-Min sketch). The errors for
heavy hitters (i.e., > 103 packets) are shown in §C.

Since user packet drops are rare in our setup, we do not present
the loss rate for packet drop notifications. Ground truth results
are captured with the help of extensive out-of-band logging
in the simulator.
Default setting (Figure 6). Figure 6 illustrates the perfor-
mance of different telemetry applications under varying load
rates. InvisiFlow maintains a zero loss rate for telemetry
packets when the load rate is below 70%. Consequently, the
ratio of missing paths and load imbalances are also 0, and the
normalized relative error is 1 below this threshold. However,
InvisiFlow has to drop telemetry packets when the load ex-
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Figure 6: Default setting. InvisiFlow maintains a zero loss rate when the load rate is below 70%.
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Figure 7: Load imbalance. InvisiFlow maintains a zero telemetry packet drop rate even under an 80% load, whereas the
loss rates of low-priority UDP and pull-based transmission increase compared to the default setting.

ceeds 70% due to limited available bandwidth for low-priority
transmission, which could be smaller than the generation rate
of the telemetry packets. The performance of pull-based
transmissions deteriorates under heavy loads compared to
low-priority UDP because it cannot fully utilize the buffer
and bandwidth when the available bandwidth is insufficient
for the telemetry data throughput. Default-priority UDP does
not drop packets even under 80% load, but increases the FCT
by approximately 26.4%, as discussed in §6.3.

At a 70% load, InvisiFlow’s ratio of missing paths is ap-
proximately 33.8× and 36.3× lower than that of low-priority
UDP and pull-based baselines, respectively. The gap between
them narrows under an 80% load, as there is limited room to
reduce loss due to insufficient available bandwidth for low-
priority packets at such a high load rate. However, InvisiFlow
still shows a 1.6× and 3.1× improvement over low-priority
UDP and pull-based baselines, respectively. Regarding the
relative error of all flows, InvisiFlow at a 70% load exhibits
a reduction of approximately 2.4× and 4.8× compared to
low-priority UDP and pull-based baselines, respectively. Nor-
malized relative errors may decrease with higher load rates
due to increased error in the original Count-Min sketch caused
by higher traffic volumes.

Load imbalance (Figure 7). In this scenario, InvisiFlow
maintains a zero telemetry loss rate even under an 80% load,
whereas the loss rates of low-priority UDP and pull-based
transmission increase compared to the default setting. This
is because the load imbalance reduces the throughput of
user traffic, potentially leaving more available bandwidth for
telemetry data. However, low-priority UDP and pull-based
baselines fail to fully utilize this additional bandwidth as they

remain constrained to the shortest path.
At a 70% load, the ratio of missing paths for InvisiFlow is

0, while it is 33.2% and 27.9% for low-priority UDP and pull-
based baselines, respectively. Furthermore, the normalized
relative error of all flows for InvisiFlow is 1, while it is 4.2
and 6.2 for low-priority UDP and pull-based, respectively.

Asymmetric topology (Figure 8). In an asymmetric topology,
the loss rates of low-priority UDP and pull-based transmission
experience significant increases. In contrast, InvisiFlow only
drops telemetry packets when the load rate exceeds 70%.
Specifically, the ratio of missing paths for low-priority UDP
often exceeds 40%, and for the pull-based baseline, it often
exceeds 30%. Furthermore, the normalized relative error of
all flows for low-priority UDP and pull-based baselines can
reach up to 22.5 and 48.6, respectively.

ML workloads (Figure 9). In ML workloads, InvisiFlow
has a zero telemetry packet drop rate even under an 80%
load, while low-priority UDP and pull-based transmission
lose approximately 11.9% and 12.9% of paths at an 80% load,
respectively. Furthermore, at a 70% load, the relative error of
all flows for InvisiFlow is approximately 1.5× and 4.6× lower
than that of low-priority UDP and pull-based, respectively.

Different buffer sizes (Figure 10). In addition to the de-
fault buffer size of 170 KB, we experiment with different
buffer sizes under the default setting. We observe that
InvisiFlow achieves a 0% loss rate when the buffer size ex-
ceeds 400 KB, because the congestion gradient-based trans-
mission efficiently utilizes all available telemetry buffers
across the network. In contrast, low-priority UDP and pull-
based transmission lose around 5.8% and 9.8% of paths, re-
spectively, even with a 500 KB buffer. With a 500 KB buffer,
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Figure 8: Asymmetric topology. InvisiFlow only drops telemetry packets when the load rate exceeds 0.7. The ratio of
missing paths for low-priority UDP often exceeds 40%, and for the pull-based baseline, it often exceeds 30%.
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Figure 9: ML workload (Default setting).
Default-priority UDP
Low-priority UDP

Pull-based transmission
InvisiFlow

100 200 300 400 500
Buffer size (KB)

0

10
−3

10
−2

10
−1

10
0

R
at

io
 o

f M
is

si
ng

 P
at

hs

=

(a) Path loss for NetSeer

100 200 300 400 500
Buffer size (KB)

1

3

5

7

N
or

m
al

iz
ed

R
el

at
iv

e 
Er

ro
r

(b) Flow error for ApproSync

Figure 10: Different buffer sizes (80% load).

the relative error of all flows for InvisiFlow is approximately
1.5× and 3.1× lower than that of low-priority UDP and pull-
based baselines, respectively.
CDF for delay of telemetry packets (Figure 11). Figure 11
illustrates the end-to-end delay of the telemetry packets. We
calculate the delay by subtracting the timestamp at which the
collector receives the packet from the timestamp at which
the telemetry packet is generated. In case of packet loss, we
consider the delay infinite. Notably, InvisiFlow significantly
improves tail latency compared to other low-priority transmis-
sions. Under a 40% load, the 99% latency of InvisiFlow is
approximately 80 µs, which is around 3.4× and 10.9× lower
than that of low-priority UDP and pull-based baselines, re-
spectively. Under an 80% load, InvisiFlow increases the delay
to avoid both telemetry packet loss and impact on user traffic,
with a 99% latency of around 4.9 ms.
Using multiple servers (Table 3). Using multiple collectors
or additional available servers as temporary storage can fur-
ther reduce telemetry data loss. When using two collectors,
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Figure 11: Delay of telemetry packets (Default setting).

telemetry data can be directed to any available collector, en-
abling a 0% loss rate. When using one available server, the
threshold of the buffer usage determines the storage usage in
available servers and the data loss rate. A higher threshold
increases the risk of data loss but reduces the storage usage in
available servers, and vice versa. Setting the threshold to 25%
allows zero loss rate while utilizing up to 13.63 MB of storage
for telemetry packets under the default setting. Unlike using
multiple collectors where telemetry data can be distributed,
using available servers results in all telemetry data being sent
to the single designated server without further aggregation.

6.3 Impact on User Traffic
In this section, we compare InvisiFlow with other communi-
cation substrates and show that InvisiFlow achieves near-zero
overhead to user traffic. The experimental setup is consistent
with that in §6.2.
Metric. We evaluate the flow completion time (FCT) of user
traffic initiated between 20% and 80% of the simulation time
(i.e., when the telemetry applications are running). The FCT
is normalized to the case where no telemetry data is generated.
Default setting (Figure 12). In Figure 12a, we group the FCT
by the destination of the user traffic and calculate the ratio.
We find that user traffic destined for the rack of the collector
is primarily influenced by the telemetry data under the de-
fault setting. Assigning telemetry data default priority results
in an FCT increase of ∼26.4% under an 80% load. In con-
trast, InvisiFlow and low-priority baselines exhibit minimal
overhead, often <1%. Figure 12b shows the ratio under dif-
ferent load rates, showing that the overhead of InvisiFlow and



Default Setting Telem. Loss Peak Avail. Util

1 Collector 2.34% N/A
+ 1 Collector 0.00% N/A
+ 1 Available Server

1.94% 2.27 MB
*Threshold: 50%
+ 1 Available Server

0.00% 13.63 MB
*Threshold: 25%

Asymmetric topology Telem. Loss Peak Avail. Util

1 Collector 5.38% N/A
+ 1 Collector 0.00% N/A
+ 1 Available Server

1.79% 10.92 MB
*Threshold: 50%
+ 1 Available Server

0.00% 25.83 MB
*Threshold: 25%

Table 3: Telemetry packet loss rate and peak storage uti-
lization of available servers when using multiple servers
for telemetry data collection. We evaluate the default and
asymmetric topologies under 80% load.

Default-priority UDP
Pull-based transmission

Low-priority UDP
InvisiFlow

Other
Racks

Collector's
Block

Collector's
Rack

Group by destination

0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 F
C

T

(a) 80% load rate.

0.4 0.5 0.6 0.7 0.8
Load rate

0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 F
C

T

(b) In Collector’s rack.

Figure 12: Normalized FCT (Default setting).

low-priority remains minimal, while the overhead of default-
priority UDP increases with higher load rates.
Asymmetric topology (Figure 13). As depicted in Figure 13a,
user traffic not only to the rack but also to the block contain-
ing the collector is significantly influenced by telemetry data
under the asymmetric topology. For default-priority UDP, the
FCT of user traffic to the rack increases by ∼38.4%, and the
block by ∼25.2%. In contrast, InvisiFlow and low-priority
baselines maintain near-zero overhead (<1%). Figure 13b
illustrates that under a 50% load, the FCT of user traffic is
doubled. The normalized FCT may decrease with increasing
load rates due to user traffic causing more congestion.

6.4 Testbed Experiments
Topology (Figure 14a). We emulate a 2-tier leaf-spine topol-
ogy in our testbed. With two physical switches, similar to [11],
we divide one 128-port physical switch into four virtual leaf
switches and the other into two virtual spine switches. The
virtual switches are connected with 10 Gbps links. In the data
plane, every logical switch has its isolated buffer of telemetry
packets and runs InvisiFlow independently.
Setup. We emulate the case that a link to the collector is fully
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Figure 13: Normalized FCT (Asymmetric topology).

occupied by user traffic. Specifically, as shown in Figure
14a, we build a TCP connection between two servers and
send traffic. Then, we measure the statistics in the right
spine switch, which is the main bottleneck for telemetry data
transmission. We use the load imbalance detection as the
application and compare InvisiFlow (IF) with the low-priority
UDP (LP) and the default-priority UDP (DP) as above.
Loss rate of telemetry packets (Figure 14b). In Figure 14b,
we measure the loss rate of telemetry data in the right spine
switch. We can find that the loss rate for low-priority UDP
is higher than 97%. Because the only shortest path to the
collector is fully occupied by the user traffic, low-priority
UDP can hardly send telemetry data. In contrast, the loss rate
of InvisiFlow is always 0 because InvisiFlow can find other
available paths to send telemetry data. Note that the loss rate
of default-priority UDP is also higher than 80% and increases
over the size of TCP flows. It may be due to the switch
architecture, i.e., mirroring could fail when the corresponding
egress port is fully utilized by user traffic.
Impact on user traffic (Figures 14c and 14d). In Figure 14c,
we measure the ratio between the flow completion time (FCT)
of user traffic with telemetry data against that without any
telemetry. The overhead incurred by low-priority UDP and
InvisiFlow is negligible (<0.1%), while the overhead of the
default-priority UDP is higher (≈0.8%). The overhead of the
default-priority UDP is mitigated because the switch already
drops over 80% of telemetry packets when user traffic fully
utilizes the link, as illustrated in Figure 14b.

In Figure 14d, we measure the delay of user packets within
the right spine switch over time. Specifically, we calculate
the switch delay by subtracting the timestamp at the egress
pipeline from the timestamp at the ingress pipeline. The ideal
delay in the figure represents the delay without any telemetry
data. We can find that the default-priority UDP will gradually
increase the delay of user packets over time, leading to the
queue becoming full and subsequent packet drops. The delay
for default-priority UDP could be up to 103× larger than the
ideal delay. Conversely, the delay of low-priority UDP and
InvisiFlow is similar, which keeps around 2× as the ideal
delay. In other words, the delay of default-priority UDP could
be up to 500× larger than that of InvisiFlow. The reason
for the additional delay (1× more normalized delay) in low-
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Figure 14: Testbed experiments.

priority UDP and InvisiFlow might be that the switch will start
strict prioritization only after there is a user packet waiting
in the queue. However, it will not influence the overall flow
completion time as shown in Figure 14c.

7 Discussion
Limitations of InvisiFlow. We note that InvisiFlow, in its ef-
fort to minimize the impact on user traffic, may result in drops
and arbitrary delays of telemetry packets, particularly if all
ports of the switch are fully utilized by user traffic. Under an
extreme case where none of the switches have available band-
width, all low-priority transmissions, including InvisiFlow,
would have to drop packets. However, such scenarios are rare
in modern high-speed networks. As demonstrated in §6.2,
even under 80% load, InvisiFlow can reduce missing paths
by around 1.63× and 3.08× compared to low-priority UDP
and pull-based baselines, respectively. If a portion of teleme-
try traffic is essential, it can always fall back on standard
transport mechanisms. InvisiFlow may also struggle with
networks that need a large number of distinct collector types,
as it requires the use of a separate buffer allocation for every
type. Switching ASICs with more flexible memory access
patterns may alleviate this limitation [64, 65].
Low-latency transmission. In some cases, telemetry reports
may only be valuable if collected in a timely manner. Hereto-
fore, InvisiFlow was presented as a framework that minimizes
loss but does not bound the latency of reports. To support
time-sensitive reports, we can adapt InvisiFlow by restricting
sending to only hops that are strictly closer to the eventual
destination. Packets would have fewer options for forwarding,
but prior work on progressive routing has shown that adaptive
routing policies like InvisiFlow’s are still very effective [66].
Generality to other applications. InvisiFlow’s abstraction to
exploit network-wide under-utilized bandwidth is also appli-
cable to other application amenable to low-priority transmis-
sion. As discussed above, InvisiFlow cannot (1) guarantee the
delivery and (2) support too many distinct destinations. To ad-
dress these problems, we can (1) ask the above application to
handle delivery or add a layer above InvisiFlow to guarantee
delivery as TCP and (2) group multiple destinations into one
for simplicity, similar to how we group multiple IP addresses
into an IP prefix. We leave the extension to user applications
as future work.

8 Related Work

Applications of congestion gradients. Congestion gradi-
ents (i.e., max-weight scheduling) have mainly been stud-
ied in a theoretical context [49, 50]. The mathematical op-
timality properties of congestion gradients have motivated
experimental demonstrations of its use on wireless sensor net-
works [67,68]. Some work [69] also applies it to urban traffic
networks. However, these works focus on entirely different
scenarios, so they need to consider many different factors
(e.g., lossy links in wireless networks) and implement the
systems on different platforms (e.g., CPU in sensors).
Per-packet multi-path routing. A commonly studied per-
packet multi-path routing technique is packet spraying [51].
However, as shown in §6.2, the loss rate of low-priority UDP
remains high even when utilizing packet spraying. This is
because packet spraying assumes symmetry topology, while
the available bandwidth for low-priority transmission is of-
ten asymmetric and varies largely over time. Furthermore,
there are also some other per-packet multi-path routing proto-
cols proposed [70, 71], primarily for wireless networks. As
discussed above, they focus on entirely different scenarios
and are mainly designed to achieve different objectives (e.g.,
energy efficiency, security, and reliability).
Explore external memory in servers. Prior work has sug-
gested system architectures that allow switches to utilize ex-
ternal memory on servers [52, 53]. The switches can directly
access DRAM on servers via RDMA. However, similar to
default-priority UDP, such a way is not friendly to achieve
near-zero overhead on user traffic. In addition, [52,53] need to
pre-define the memory allocated in servers, while InvisiFlow
can dynamically adjust the size of the memory needed.

9 Conclusion

Existing transmission methods for telemetry data often have
to choose between overhead to user traffic and sustainable
throughput of telemetry. To achieve both, we introduce
InvisiFlow, a low-priority communication substrate utilizing
opportunistic sending and congestion gradients. Our experi-
mental results show that InvisiFlow can support high sustain-
able throughput with minimal impact on user traffic across
multiple different applications and settings.
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A Background of OrbWeaver
OrbWeaver [21] is a framework designed for the opportunistic
transmission of data within modern programmable networks.
As detailed in its paper, OrbWeaver imposes a negligible
impact on user traffic, the computational/state resources of
participating switches, or their power consumption.

Instead of “measuring” the utilization of each port, Orb-
Weaver continually generates a stream of low-priority packets.
Leveraging the behavior of priority queues, when there are no
high-priority user packets in the queue, the low-priority pack-
ets produced by OrbWeaver can effectively utilize the avail-
able bandwidth and are transmitted to neighboring switches.
Essentially, OrbWeaver fills these bandwidth gaps based on
the characteristics of the priority queue.

OrbWeaver also supports the amplification (i.e., multicast)
of low-priority packets, as demonstrated in its paper. In
InvisiFlow, we require only one multicast group to multi-
cast pull requests to all neighboring switches. For Intel Tofino
switches, the multicast group ID can be configured in the
control plane, enabling the data plane to utilize this ID for
multicasting packets.

B Workloads
Our evaluation workloads are configured as follows.
Hadoop workload (FB_Hadoop). By default, we adopt the
FB_Hadoop workload [40]. In this workload, around 60%
of the flow sizes are smaller than 1 KB, and the flows arrive
according to a Poisson process as in previous work [17, 19].
Machine learning workload (ML). We emulate an ML work-
load to demonstrate InvisiFlow’s performance under different
traffic patterns and distributions. In this workload, all flows
are large (1 MB each), and multiple ML jobs are running
concurrently. We randomly select eight servers for each ML
job and these servers periodically exchange data with each
other, as described in [72, 73]. The duration of the period is
calculated based on the load rate.

C Flow Error for Heavy Hitters
This section shows the normalized relative error of the flow
size for heavy hitters with more than 103 packets.

The results are similar to the relative error of all flows
shown in §6.2. Under the default setting, InvisiFlow at a
70% load exhibits a reduction of approximately 1.6× and
4.9× compared to low-priority UDP and pull-based baselines,
respectively. In the asymmetric topology, the normalized
relative error of all flows can reach up to 14.4 for low-priority
UDP and 54.8 for pull-based baselines.
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