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ABSTRACT

TOWARD ZERO-WASTE TERABIT NETWORKED SYSTEMS

Liangcheng Yu

Vincent Liu

To support modern applications, computer networks perform a plethora of auxiliary functions be-
yond basic application data forwarding. Obvious examples include serialization and encryption,
triggered on most data transfers, but also control and monitoring that analyze and update network
states.

Unfortunately, the unprecedented increase in application demand and a concurrent slowdown in
the scaling of compute capability make it increasingly challenging to maintain these functions per-
formantly and cost-effectively. On the one hand, continued exponential increases in network link
speeds have led to the majority of congestion events occurring at microsecond time scales, dimin-
ishing the effectiveness of current control and monitoring protocols. Conversely, adding supporting
resources (e.g., bandwidth, processing cores, and power budget) incurs expensive costs at scale,
entailing not only capital and operating expenditures but also carbon footprint.

In this dissertation, we characterize and explore a zero-waste design approach by unlocking the
potential of widespread in-network waste and present three case studies for auxiliary functions
spanning across data, control, andmanagement planes: (a) OrbWeaver, a weaved stream abstraction
that reuses IDLE cycles in Ethernet links at 100s of ns granularity for state-of-the-art in-band control
protocols; (b) Mantis, a switch-local reaction framework that recycles switch-local resources and
co-designs them with the programmable data planes for user-defined and fine-grained (at 10s of µs
granularity) closed-loop control functions; and (c) Beaver, an optimistic gateway marking primitive
that reduces the waste of additional servers and instrumentation cost to enable partial snapshots
‘in-situ’ for diagnosing distributed cloud services with near-zero impact to existing service traffic.
We also show that it is possible to integrate these functions performantly at near-zero cost.
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The dissertation concludes with a vision for zero-waste networked systems, where we instantiate
zero-waste designs to maximize the utility of residual network capacity despite existing efforts to-
ward high-efficiency designs. More broadly, we posit that a grand challenge of our computing infras-
tructure is pushing waste to its limits amidst technology scaling slowdowns and increasing environ-
mental concerns. This dissertation invites us to rethink the design patterns for networked system
and outlines a spectrum of opportunities to advance this goal.
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CHAPTER 1

INTRODUCTION

Entities should not be multiplied beyond necessity.

William of Ockham

1.1. Motivation

1.1.1. Networks, Beyond Application Data Forwarding

Modern networked systems have directly enabled applications that transform billions of people’s
lives, from the way we travel, trade, and entertain to how we communicate and find information.
The massive growth of these applications has, in turn, led to an increase in network speed, massive
scaling of deployment sizes, growth in the diversity of workloads and network policies, and rising
heterogeneity of hardware and software.

To sustain these trends and continue serving tomorrow’s users, modern networks—from the perspec-
tive of network operators—must perform not only massive computations and communications for
applications, but also a spectrum of auxiliary functions. Examples include additional processing asso-
ciated with each service request (such as for serialization and encryption), but also a wide spectrum
of control tasks to monitor, analyze, and update network states [35, 118, 147, 113, 101, 123, 124],
as shown in Table 1.1. These functions are instrumental in meeting the ever-increasing performance
demands of applications.

Increasing networking bandwidth, a double-edged sword. The past decades have witnessed the
continuous evolution of the Ethernet link bandwidth, advancing from 10 Mbps in the early 1980s to
the 400 Gbps commonplace today (Figure 1.1). 800 GbE is on the horizon—with the recent approval
of the IEEE P802.3df Task Force standard, alongside new technologies like next-generation switching
chips, higher modulation schemes, and energy-efficient optical modules—and the timeline for 1.6
TbE standardization is anticipated by 2026 [28, 25]. While this unprecedented growth in bandwidth
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Figure 1.1: Ethernet link bandwidth (per the corresponding Ethernet standard) has increased by
five orders of magnitude during the past decades and is approaching Terabit speed to sustain the
application demand.

has brought significant benefits to users, such as faster transfer of application data, it has also made
it increasingly challenging for network operators to support auxiliary functions such as monitoring
and control.

One direct implication of faster bandwidth is that the timescale of network events is getting smaller,
which poses significant challenges to current control andmonitoring protocols. Consider the timescale
of a single packet transmission. While networking bandwidth has increased by several orders of
magnitude, packet sizes have remained relatively static since the inception of the Ethernet stan-
dard. For example, with 400 GbE, the transmission delay for a 1500B packet decreases to just 30
ns. Recent studies in major production networks have also shown that the majority of congestion
events occur on microsecond timescales [204, 193, 72]. As a result, terabit networks push the nec-
essary granularity to more microscopic scales, causing a growing mismatch with today’s control and
monitoring protocols, which are increasingly coarse-grained and ineffective in reacting to network
behaviors. The severity of this mismatch is increasing as the bandwidth continues to grow. Moreover,
the network is encompassing a more heterogeneous set of devices, and emerging user-facing and
high-performance computing applications are demanding ever-increasing latency and throughput
requirements, raising the bar for performance-critical control functions even further.

Adding to the challenge is that while the bandwidth has grown dramatically, many other elements
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Tax functions Overhead considerations

Layer-4 load balancing “...in our cloud, less than 1% of the total server cost would be considered low cost,
so any solution that would cost more than 400 general-purpose servers is too expen-
sive.” [147]

Layer-3 load balancing “The ToRs in the network need to send HULA probes frequently enough so that the
network receives fine-grained information about global congestion state. However,
the frequency should be low enough so that the network is not overwhelmed by probe
traffic alone.” [105]

In-band telemetry “In the presence of 48 bytes overhead, which corresponds to 3.2% of a 1500B packet,
the average FCT increases by 10%, while the goodput for long flows degrades by 10%
if network utilization is approximately 70%.” [47]

Failure diagnosis using
packet trace analysis

“A similar same scalability challenge applies to trace analysis. Because commod-
ity switches have limited storage and CPU power, traced packets must be sent to
servers for analysis...still need 3200 servers for analysis which is prohibitively ex-
pensive.” [208]

Clock synchronization “However, it does not handle synchronization between network devices (in the
data-plane) and incurs a non-negligible amount of bandwidth and processing over-
head.” [103]

RPCs, protobufs, and
so on

“...‘tax cycles’ consistently comprise 22-27% of all execution... We have observed
services that spend virtually all their time paying tax, and would benefit dispropor-
tionately from reducing it.” [101]

Virtual switch firewall “Each feature we add to the Fast Path has a cost and consumes per-packet CPU
budget. Only performance-critical low-latency work belongs on the Fast Path.” [58]

Service mesh sidecars “...microservices spend much more time sending and processing network requests
over RPCs or other REST APIs...this time increases to 36.3% of total execution time,
causing the system’s resource bottlenecks to change drastically.” [68]

Table 1.1: Example auxiliary functions and associated cost considerations.

have not kept up. Consider the latency between various components of the network, such as the
latency between the control and data planes and the end-to-end latency between end hosts. These
latencies are becoming less effective compared to the increase in bandwidth, approaching their lower
bounds due to fundamental limits in hardware components (e.g., Forward Error Correction (FEC))
and physical distances [160, 25]. This makes timely feedback more difficult for closed-loop control
functions, such as failure diagnosis, where it becomes more challenging to correlate information
about misbehaviors in connectivity, storage, configurations, and power supply and to locate the
exact culprits and victims in time. Such limitations are fundamental and extend far beyond the
latency factor, with the concurrent slowdown in the scaling of the compute capability exacerbating
the issue.

Performance-cost trade-off in supporting auxiliary functions. Given the challenges described,
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what options are available to network operators? Maintaining the current status is not viable, as
the onus is on the network operator to keep up with the increasingly stringent performance require-
ments and application demand. Instead, operators might consider adding the necessary supporting
resources (e.g., bandwidth, processing cores, and power budget) to keep pace with the successive
generations of link speeds and increasing demand. Unfortunately, this approach incurs significant
costs at scale, encompassing both capital and operating expenditures, as well as an increased car-
bon footprint, which includes both embodied carbon (the cost incurred during semiconductor man-
ufacturing and amortized throughout the hardware’s lifetime) and operational carbon (the day-to-
day footprint of the system during energy consumption) [81, 149, 79, 116]. Such cost concerns
(Table 1.1) are becoming more pronounced as technological advancements in DRAM $/byte, disk
$/byte, and power efficiency plateau, alongside growing environmental concerns [38, 149, 39].

At the heart of this dilemma is the tension between performance and costs. As a result, network
operators are often forced to carefully consider these costs andmake ad-hoc decisions. In some cases,
this involves making delicate continuous trade-offs, such as limiting the aggressiveness of auxiliary
functions despite evidence of the benefits of finer granularity [195, 105, 81, 124]. In others, the
trade-off is binary, and operators may, unfortunately, have to lose the efficacy of functions such as
correctness guarantees due to prohibitive costs [196, 133].

In this light, we ask the question: Are these trade-offs fundamental, or are they merely artifacts
of existing designs? Are there ways to maintain their performance while minimizing costs and the
impact on regular operations?

1.1.2. Underutilization in Terabit Networks

Somewhat surprisingly, modern networks often harbor a substantial amount of wasted capacity—an
unwanted by-product1 despite efforts to improve resource efficiency while optimizing performance
for application workloads.

A case of idle cycles in Ethernet links. Recent studies, including our own measurements, reveal
1Here we primarily refer to waste as unused capacity after today’s resource use by applications, including any opti-

mizations and efficiency improvements.
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pervasive underutilization in Ethernet links, especially at high-resolution time scales. As mentioned,
this underutilization is in spite of employing custom TCP protocols, complex traffic engineering,
and prioritization schemes and also applies to networks that primarily handle large bulk-data trans-
fers [193, 195, 204, 192]. The root causes of this waste are fundamental and span from resource
provisioning to the online allocation process.

Gap between resource provisioning and online demand: Network architects and operators often pro-
vision bandwidth capacity for peak loads, leading to wasted bandwidth during off-peak times. This
occurs not only in the form of tidal patterns at coarser time scales but also due to unpredictable
micro-bursts at microsecond intervals, caused by faster networking [87, 121, 62, 204]. The root
cause is the inherent uncertainty and high temporal variance in workloads. Recent studies have
shown that the median usage of NIC-connected links can be orders of magnitude smaller than the
peak load on most servers in production data centers [44, 50]. Additionally, even with predictable
workloads, hardware procurement involves fundamentally discrete, coarse-grained options, forc-
ing imperfect match against the application demand. These margins scale and accumulate across
hundreds of thousands of machines and links at the data center level, contributing to the gap.

Sub-optimal resource allocation: Achieving perfect resource allocation is inherently challenging. For
instance, despite decades of research in congestion control, recent studies have identified deficien-
cies in the backoff behaviors of state-of-the-art transport protocols for high-bandwidth links, result-
ing in underutilized bandwidth that cannot be reclaimed by contending flows [40]. More fundamen-
tally, real-world application traffic patterns are often far from ideal, potentially excluding solutions
to achieve full utilization of all links. For instance, spatial localities across sender-destination pairs,
such as partition-aggregation traffic where a frontend server receives incasted traffic from multiple
response senders, prevent tighter bin-packing of flows. Unfortunately, we cannot alter these given
traffic patterns to fit idealized permutations. Moreover, any changes in conditions, such as failures
or workload variations, can lead to potential waste during the adaptation of the allocation scheme.

Structural asymmetry: Underutilization can also stem from asymmetric capabilities between up-
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Category Examples

Compute Switch data plane [197, 158] and on-board CPUs [193, 204], SNIC com-
putes [125], SLBs [147]

Communication Ethernet links [44], switching ASIC PCIe links [193, 204]
Storage On-chip SRAM [205], switch CPU DRAM [109], SNIC HBMs [198]

Table 1.2: Instances of in-network wastes.

stream and downstream resources. For instance, host CPU processing bottlenecks in servers with
high-bandwidth NICs can result in underutilized network bandwidth, even when CPUs are fully
utilized [30, 195, 125]. Additionally, host compute resources such as CPUs and GPUs can be under-
utilized in practice [178, 95]. The interplay between these components becomes more pronounced
as the ratio of network bandwidth to other resources, such as DRAM or CPUs, increases [12].

Broader scope of in-networkwaste. Combining all the aforementioned reasons, it is fundamentally
challenging to fully utilize Ethernet links 100% of the time. These underutilization patterns are not
limited to Ethernet links but extend to various network resources, as shown in Table 1.2. In the
end, they can occur across different time dimensions, spatial locations, and vertical system stacks
within contemporary scale-out data center networks. Moreover, they typically result in wasted power
consumption for various components, such as middleboxes, switch transceivers, and memory [62,
195, 91, 135].

In addition, many of these in-network wastes, unlike host server resources such as CPUs, are not
well-suited for direct application use. For example, switch CPUs are disconnected from the appli-
cation data and are not set up for general-purpose computing [193, 192, 204]. Similarly, while
SNICs are physically closer to host applications, offloading application executions using their com-
pute resources can have negative effects, such as increased host interconnect congestion and caching
disturbance, affecting application performance [164, 19, 30].

1.2. Principles of Zero-waste Designs

Inspired by observation, this dissertation explores the question: Why not harness the in-network waste

left after the primary use by applications? Is it possible to integrate auxiliary functions with near-zero
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Figure 1.2: An illustrative example of intercropping for vineyards.

costs by exploiting in-network waste? We answer the question in the affirmative. To illustrate the intu-
ition, we make an analogy to intercropping in agriculture (Figure 1.2). In vineyards, primary crops,
such as grapes, are often paired with companion plants such as cover crops, lavender, and rosemary.
These companion plants utilize idle resources such as sunlight and spatial differences to enhance the
overall farm system, improving soil fertility, microclimate, biodiversity, disease management, and
pest control—all without negatively impacting primary crops [120, 177].

Characterizing zero-waste designs. We note that the above goals are distinct from that of existing
efforts toward high-efficiency designs, where operators, given a user workload, output a network
that optimizes end-to-end performance metrics (e.g., throughput) while minimizing resource usage.
Instead, our goal is to, given the workload and network from the previous step, maximize the utility
of that network, i.e., minimize the waste—we characterize our approach as zero-waste designs2.

We find that this distinction in objective suggests a broader scope of practices to minimize waste
beyond existing efforts on resource reduction or scheduling. Moreover, by unleashing the potential of
in-network waste and exploiting the characteristics of the underlying environment, we can navigate
previous trade-offs effectively and support auxiliary functions with minimal costs and impact on
existing applications while maintaining their efficacy.

2The term ‘zero-waste’ is familiar in the context of daily sustainability practices such as garbage recycling or upcycling
for greater environmental or artistic value [29]; here, we extend the notion to networked system designs.
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Thesis: By harnessing the existence of prevalent in-network waste, zero-waste designs can support

auxiliary functions both effectively and cost-efficiently.

Rationale for harnessing in-network waste. While the intuition to exploit the in-network waste
left by applications (§1.1.2) is conceptually straightforward, we delve deeper into why it is fun-
damentally beneficial to harvest these resources. One general finding is that many underutilized
resources incur costs even when idle. For instance, keeping a server fully idle still incurs the cost of
embodied carbon—which is now recognized as a major contributor to Information and Communi-
cation Technology (ICT) emissions [79]. Therefore, utilizing them is ‘free’ to some extent.

One might question if using these resources could lead to additional costs, such as increased power
consumption. However, pushing towards full utilization remains beneficial. For example, in terms of
power, the relationship between power consumption and utilization is concave: power consumption
increases marginally with utilization [63, 41, 91, 144, 195]—a behavior common in CPUs, DRAMs,
or switching ASICs—partly due to the dominant idle power component. Consequently, consolidating
workloads to maximize utilization is advantageous3.

Elements of zero-waste designs. Creating zero-waste designs and developing primitives that un-
lock their full potential is challenging and context-specific—there is no one-size-fits-all mechanism.
Here, we highlight key questions to navigate for each custom scenario.

How to effectively identify in-network waste? Identifying in-network waste can be straightforward in
some cases but challenging when it occurs at finer time scales or varies with fluctuating user traffic
loads. Understanding its patterns and fundamental causes, particularly in the spatial dimension
(such as the dynamic interplay among different resources), adds complexity. How can we identify
waste online, especially when pushing the granularity to extremes?

3Subject to the thermal operating range of the underlying system. Note that the Power Usage Effectiveness (PUE) in
modern data centers, which accounts for the ‘wasted’ energy (i.e., the consumption that does not get to computers), is
around 1.10 and improves over time with practices such as underwater datacenters [148, 1, 11], meaning that the cooling
overhead is relatively small compared to effective power consumption.
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How to integrate auxiliary functions using in-network waste? How to ensure a near-zero impact on user

applications? Control functions differ from user functions in their execution model and are not part
of the traditional resource scheduling pipeline. They can encompass a larger set of resources, some of
which applications will never touch (e.g., switch PCIe). These resources may not even be running on
the same hardware, often along the end-to-end path. Furthermore, integrating auxiliary functions
should have a negligible impact, ensuring minimal disruption to metrics such as throughput, latency,
consistency requirements, and power consumption. How can we achieve near-zero impact when
multiplexing resources? This prompts the consideration of worst-case scenarios when designing
new primitives.

How about the performance of integrated functions themselves? What if there are no idle resources?

Even if auxiliary functions utilize idle resources, theymay have their own performance requirements.
This necessitates consideration of scenarios where idle resources are absent and the mechanisms to
handle them.

1.3. Contributions

This thesis explores the instantiation of zero-waste designs in modern networks by presenting three
novel systems for monitoring and control functions across data, control, and management planes.

OrbWeaver (NSDI 2022) [195] is a weaved stream abstraction that reuses idle cycles in Ethernet
links at 100s of nanosecond granularity for state-of-the-art in-band control protocols.

• By carefully scavenging these idle cycles using the fine-grained control capabilities of pro-
grammable switches, OrbWeaver’s communication channel incurs near-zero overhead on user
packet throughput, latency, buffer usage, and switch power consumption.

• It also provides comparable or better performance for control applications such as failure de-
tection, time synchronization, and congestion feedback, while eliminating their messaging
overheads.

Mantis (SIGCOMM2020) [193] is a reactive transaction interface that recycles underutilized switch-
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local resources such as on-board CPUs (which are increasingly capable) and the PCIe channel (con-
necting with programmable ASICs), tightly coupling them for fine-grained (at 10s of µs granularity)
closed-loop control functions.

• Unlike traditional control planes, which are much slower than typical data center congestion
events, and pure data-plane approaches, which struggle with advanced computations due to
hardware limitations, Mantis co-designs data/control plane by repurposing these resources
for high-frequency, synchronous interactions. By pushing the critical logic of the auxiliary
functions closer to the events they react to, this localized closed-loop primitive also mitigates
the divergence between bandwidth and latency.

• Mantis also automates the flexible definition of in-network functions that sense and react to
current network conditions at the sub-RTT time scale—such as hash polarization mitigation,
gray failure handling, and DoS attack defense—while maintaining consistency requirements
and ensuring no interruption or impact on line-rate user traffic.

Beaver (OSDI 2024) [196] is an optimistic gateway marking primitive that reduces the additional
hardware procurement and instrumentation costs from the outset for enabling practical partial snap-
shots of distributed cloud services.

• Rather than adopting classic snapshot primitives that require the instrumentation of all in-
volved machines, Beaver eliminates the coordination costs of external servers entirely. Fur-
thermore, it avoids the excessive overhead typical of generic distributed system designs by
tightly coupling its protocol with the regularities of the underlying data center environment.
By leveraging the placement of software load balancers in public clouds and their associated
communication pattern, Beaver also removes the need for additional processing servers or any
blocking overhead on existing user communication.

• While incurs minimal costs for current data center operations, Beaver guarantees causal consis-
tency for a wide range of use cases such as distributed deadlock detection, garbage collection,
and integration testing.
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Figure 1.3: Zero-waste designs presented in this dissertation.

Summary. This dissertation introduces a zero-waste design perspective for rethinking and min-
imizing waste in today’s networks. As an initial exploration, each system presented instantiates
practical primitives and illuminates the practices of zero-waste designs (reduce-reuse-recycle4) to
upcycle in-network waste and enable performant auxiliary functions at near-zero cost, as shown in
Figure 1.3.

With the relentless increase in application demands, technology scaling slowdowns in the post-Moore
era, and pressing environmental concerns, we posit that zero-waste designs will increasingly become
a norm. In fact, Mantis, for example, has inspired Google to upcycle their idle switch resources for
valuable auxiliary tasks such as traffic management, congestion control, and network debugging.
A variant of Mantis has been deployed fleet-wide at Google across a heterogeneous set of switches
with varying programmability capabilities, providing fine-grained visibility into network behaviors
and serving emerging latency-sensitive workloads. It has also demonstrated practical utility in re-
solving real-world production issues, including protocol debugging & evaluation, root cause analysis
of network outages, and the design of network functions. Additionally, it has influenced the design
of an evolvable INT solution deployable in large-scale production networks (reflected in an IETF
standard draft [152]), and has also led to a collaborative paper under submission [192].

4Inspired by the three-Rs for waste minimization [29, 99].
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1.4. Roadmap And Previous Publications

The remainder of this dissertation is organized as follows. Chapter 2, 3, and 4 dive into the three
instantiations of zero-waste designs, including OrbWeaver, Mantis, and Beaver. Finally, Chapter 5
discusses other collaborative work on zero-waste designs, summarizes lessons learned, and envisions
future work.

Previously publications. Three of the chapters are adapted from previous publications, where the
dissertation author is the primary author. The source code for all systems presented in this disser-
tation is available online.

• Chapter 2 revises: (NSDI 2022) Liangcheng Yu, John Sonchack, and Vincent Liu. OrbWeaver:

Using IDLE cycles in programmable networks for opportunistic coordination. In 19th USENIX
Symposium on Networked Systems Design and Implementation [195].

• Chapter 3 revises: (SIGCOMM 2020) Liangcheng Yu, John Sonchack, and Vincent Liu. Man-

tis: Reactive programmable switches. In Proceedings of the ACM SIGCOMM 2020 Confer-
ence [193].

• Chapter 4 revises: (OSDI 2024) Liangcheng Yu, Xiao Zhang, Haoran Zhang, John Sonchack,
Dan Ports, and Vincent Liu. Beaver: Practical partial snapshots for distributed cloud services. In
18th USENIX Symposium on Operating Systems Design and Implementation [196].

Other co-authored publications:

• (SIGCOMM 2022) Liangcheng Yu, John Sonchack, and Vincent Liu. Cebinae: scalable in-

network fairness augmentation. In Proceedings of the ACM SIGCOMM 2022 Conference [194].

• (SIGCOMM2022) Yiran Lei, Liangcheng Yu, Vincent Liu, andMingwei Xu. Printqueue: perfor-
mance diagnosis via queuemeasurement in the data plane. In Proceedings of the ACMSIGCOMM
2022 Conference [118].

• (SIGCOMM 2023) Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang. Cowbird:
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Freeing cpus to compute by offloading the disaggregation of memory. In Proceedings of the ACM
SIGCOMM 2023 Conference [53].

• (NSDI 2025) Yinda Zhang, Liangcheng Yu, Gianni Antichi, Ran Ben Basat, and Vincent Liu.
Enabling Silent Telemetry Data Transmission with InvisiFlow. In 22nd USENIX Symposium on
Networked Systems Design and Implementation [205].
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CHAPTER 2

REUSING IDLE LINK CYCLES FOR IN-BAND CONTROL COMMUNICATION

Waste not, want not.

Benjamin Franklin

This chapter was previously published in press as Liangcheng Yu, John Sonchack, and Vincent Liu.

OrbWeaver: Using IDLE cycles in programmable networks for opportunistic coordination. In 19th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 2022). The dissertation
author led all phases of the project, from idea development to system prototyping and writing.

Abstract. Network architects are frequently presented with a tradeoff: either (a) introduce a new
or improved control-/management-plane application that boosts overall performance, or (b) use the
bandwidth it would have occupied to deliver user traffic.

This chapter presents OrbWeaver, a framework that can exploit unused network bandwidth for
in-network coordination. Using real hardware, we demonstrate that OrbWeaver can harvest this
bandwidth (1) with little-to-no impact on the bandwidth/latency of user packets and (2) while
providing guarantees on the interarrival time of the injected traffic. Through an exploration of
three example use cases, we show that this opportunistic coordination abstraction is sufficient to
approximate recently proposed systems without any of their associated bandwidth overheads.

2.1. Introduction

The purpose of a computer network is to transmit messages to and from connected devices. The bulk
of these messages are sent between two or more end hosts and are intended for use in applications
therein (video streaming, web browsing, ssh terminals, stock trackers, etc). It is important to note,
however, that networks are also frequently used for other purposes that are not directly related to
end-to-end application traffic. These uses include but are not limited to control messages, keepalives,
and probes.
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In some cases, this second category of messages is sent over dedicated networks (e.g., an out-of-band
control plane). Nevertheless, a significant portion is not, and for good reason. Multiplexing the
traffic over a unified network results in more efficient resource utilization and helpful fate-sharing
properties. For many uses, it is also required for correctness. For instance, active probing generally
relies on the probe facing the same network conditions as normal traffic.

For in-band coordination, there is often a choice between fidelity and overhead. More so as many
protocols use high-priority messages that directly cut into network capacity. For example, when de-
ciding on an appropriate interval for sending routing-protocol keepalivemessages, sending keepalives
more frequently results in faster failure detection but at the cost of many extra packets in the net-
work. Similarly, while techniques like congestion tagging [36, 89] and in-band network teleme-
try [108] can provide timely information about the recent state of network paths, they require ei-
ther extra probe packets or space in the headers of existing packets, both of which occupy valuable
bandwidth.

Given this tradeoff between fidelity and overhead, today’s networks end up settling for a little bit
of both. In some cases, the sacrifices are modest; in others, network operators are forced to limit
the aggressiveness of their systems despite evidence of the benefits of finer granularity [204, 42].
In OrbWeaver, we argue that for a diverse set of protocols, the sacrifice is entirely unnecessary—
systems can coordinate at high-fidelity with a near-zero cost to usable bandwidth and latency. In
short: we can have our cake and eat it too.

Our system, OrbWeaver, is a framework for the opportunistic transmission of data across today’s
programmable networks. OrbWeaver takes advantage of gaps between user traffic and ‘weaves’
(i.e., injects) into every such gap customizable IDLE packets that convey information across devices.
For modern, high-speed networks, these opportunities are plentiful. Crucially, OrbWeaver provides
guarantees about the ‘weaved’ stream—guarantees on the maximum time between any two packets
and guarantees on the impact of the injected packets on user traffic, switch resources, and power
draw. A consequence of this predictability is that, even when there is no opportunity to send, the
absence of IDLE packets reveals concrete information about the state of the network.
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We note that a similar abstraction already exists at the data-link layer. In particular, in today’s full-
duplex Ethernet standards, the Physical Coding Sublayer (PCS) will fill any gaps in transmission with
IDLE symbols [173, 129]. The continuous stream of incoming signals allows receivers to—with no
impact to user traffic—test for corruption and link integrity at a fine granularity, even when there
is no traffic on the network. Further, by continuing to transmit IDLE symbols after a link integrity
issue has been raised, switches can also determine when the link becomes usable again.

OrbWeaver extends this technique to higher layers of the network stack by exploiting the data
plane programmability, architecture, and packet generation capabilities of emerging programmable
switching platforms. The resulting stream of packets can be used to generalize Ethernet’s robust
failure detection properties to a broader class of faults; however, its benefits go far beyond L3 fail-
ure detection. Rather, we demonstrate that with proper application, the nearly free communication
that IDLE packets provide can be used to eliminate the fidelity-utilization tradeoff of solutions to
several classic problems in networking including clock synchronization and load balancing.

Implementing OrbWeaver’s packet weaving presented several technical challenges. First, while IDLE
symbols are part of the Ethernet standard and enjoy direct hardware/protocol support, to utilize
today’s devices and maintain their current performance, OrbWeaver must provide similar behavior
without changes to switch architectures. Second, while many systems can benefit directly from
opportunistic data transmission, many must continue to operate during periods where user traffic
is already occupying all available bandwidth. To address the first challenge, OrbWeaver introduces
a co-design of the selective data-plane filtering mechanisms and the rich priority configurations
found in modern switches to guarantee minimal impact on user traffic. We verify the approach
through a detailed examination of the specifications of the queuing subsystems on a Tofino switch
along with experiments that stress-test worst-case behavior. To address the second, we introduce
novel mechanisms that exploit IDLE packets and the guarantees of weaved streams to eliminate the
bandwidth overheads of existing network protocols. We demonstrate these mechanisms through
three case studies.
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Our implementation5 and evaluation demonstrate the efficiency and efficacy of OrbWeaver using
real hardware, optical attenuators, and power meters. We find that, despite the introduction of the
IDLE stream, OrbWeaver incurs negligible impact on user traffic, the computational/state resources
of participating switches, or their power draw. We further demonstrate that this messaging substrate
can be used to (re-)design recently proposed systems to eliminate their bandwidth overheads while
closely approximating their performance.

2.2. Motivating Weaved Streams

This section presents the definition of a ‘weaved’ stream, its motive, and where data plane pro-
grammability can help.

Definition. A weaved stream is a union of user and IDLE packets traversing a link between two
arbitrary network devices that provides two guarantees:

R1 That no link stays unutilized for too long. More precisely, there is some period τ where the
interval between any two consecutive packets, d, satisfies d ≤ τ .

R2 That the injected packets do not decrease the effective throughput of user traffic or increase
their loss rate.

Why weaved streams? Network protocols are, fundamentally, distributed computations that re-
quire coordination between different devices—sometimes adjacent devices, sometimes remote de-
vices—for monitoring, control, and management. A perennial problem is how much bandwidth to
allocate to these protocols, as each byte devoted to coordination is a byte that could have been used
for user traffic instead. This tradeoff has tangible effects for many networking tasks:

• Failure handling: A common strategy for detecting the failure of remote network devices is the
use of continuous keepalive messages. Here, each node periodically sends a keepalive to each of
its neighbors; if a neighbor ever stops sending keepalives, nodes assume that they have failed.
Fundamentally, the period between keepalives bounds the speed at which we can detect failures.
Unfortunately, because keepalives are most accurate when sent over the same or higher-priority
5Code is available at https://github.com/eniac/OrbWeaver.
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channels as user traffic, their sending rate is typically kept low (e.g., at a period of O(100ms)) at
the cost of slower detection.

• Clock synchronization: Prior work has also noted the utility of synchronizing network devices [117],
e.g., for coordinated network updates [188, 150] or real-time streams [60]. Clock synchroniza-
tion protocols typically pass messages that periodically compute the drift between the clocks of
participating machines. Constant changes to not only the relative clocks but also the relative clock
rates mean that more frequent updates can provide more accurate synchronization (at the cost of
additional packets in the network, typically configured at a high priority).

• Congestion notification: Finally, this tradeoff can be seen in the detection/communication of con-
gestion and current load. ACKs (and their corresponding loss/RTTs) are a particularly com-
mon method for inferring the presence of congestion, e.g., in TCP NewReno. As others have
noted [36, 105], however, there are also advantages to more explicit signaling of the current con-
gestion and queue statistics. Unfortunately, while effective, these statistics typically occupy packet
header space or introduce additional packets into the network.

Over the years, network architects have developed many workarounds. These include hardware
changes [129, 117], co-opting unused fields in headers [36, 207], carefully balancing the tradeoff
for a particular service-level expectation [47], or otherwise coming to terms with the cost of coordi-
nation. Outside factors can guide the above decisions, such as whether ACKs are already necessary
(e.g., for reliability) or if extraneous fields can be eliminated. However, in this chapter, we ask a
more fundamental question: are these tradeoffs necessary?

To that end, OrbWeaver is a framework for implementing network coordination that does not inter-
fere with user traffic. OrbWeaver’s weaved streams are both opportunistic and highly predictable—
consuming every inter-packet gap of sufficient size but no more. Not every protocol can be imple-
mented solely using weaved streams (though many can benefit from it). Even so, we demonstrate
that at least for the three use cases above, weaved streams are sufficient to approximate state-of-the-
art systems while reducing their impact on user traffic to virtually zero.
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Figure 2.1: An example OrbWeaver-enabled network with four switches and three end hosts (con-
nected with 10Gbps links). A single two-sided connection A ↔ B occupies the network, but a
significant portion remains unused. Gaps between packets can occur for many reasons, but Orb-
Weaver can weave IDLE packets into all of those gaps.

Why are there gaps? Usable gaps between packets can occur for many reasons, the most basic being
application-level patterns and TCP effects. Indeed, prior work [204, 156] and our conversations with
several large clouds/ISPs verify that micro-/milli-second inter-packet gaps are ubiquitous, even in
networks that primarily handle large bulk-data transfers.

Gaps can also happen for structural reasons. For example, consider Figure 2.1 (sans IDLE packets).
In it, a single connection A ↔ B occupies all usable end-to-end bandwidth. Even if A and B pace
packets perfectly, no host can send additional packets without displacing the existing user traffic,
despite significant opportunities to do so (because of, e.g., congestion, link speed changes, and
asymmetric connections). These gaps present a chance for opportunistic coordination.

Why now? OrbWeaver’s ability to weave IDLE packets into gaps between user traffic is enabled
by several features in modern switches: programmable data plane behavior, the capacity for local
packet generation, and the ability to fully configure the queuing/prioritization of different traffic
classes. We note that none of these are sufficient on their own.

For example, consider strict packet prioritization, which has been used for opportunistic bandwidth
allocation [94, 86]. In SWAN [86], for instance, end hosts send low-priority background traffic to
capture any bandwidth remaining after handling interactive and elastic services. A naïve application
of these techniques, however, is a poor fit for in-network coordination, which occurs between devices
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Figure 2.2: Conceptual diagram of the relevant components of an RMT switch, derived from the
switch specifications in [57]. Only a single ingress/egress pipeline are shown. Circled numbers
indicate steps and potential points of contention with user traffic that are handled in §2.3.1.

in the network (as opposed to end hosts) and typically involves small data sizes that benefit from
even short sending opportunities. Figure 2.1, for example, would not benefit from end-host actions.

2.3. Generating a Weaved Stream

Before we dive into the potential uses of weaved streams in §2.4, we first detail how to implement
the abstraction in today’s programmable switches.

Switch model. For simplicity, we primarily focus on the popular Tofino family of programmable
networking devices (and discuss generalization to other types of devices in §A.2). Figure 2.2 shows
a conceptual diagram of the relevant components of the switches we consider. At a high level, when
a packet enters from one of the Ethernet ports, its header is extracted by the programmable parser
responsible for that port. An ingress pipeline arbiter is then responsible for selecting one of the
parsed packets and passing it through the ingress match-action pipeline.

After ingress processing, the packet will be placed in a shared packet buffer until it is ready to be sent
out. Instead, the switch uses a shorter ‘packet descriptor’ for the next steps: optional replication by
a Packet Replication Engine (PRE) (e.g., for multicast) and placement onto a per-port egress queue
for eventual processing/deparsing. The data plane program and the traffic manager configuration
decide whether an incoming packet should be buffered and whether a buffered packet should be
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enqueued for transmission.

Goal. R1 of the weaved stream abstraction requires a constant stream of packets on every link such
that the union of user and IDLE packets satisfies d ≤ τ . We note that the optimal guarantee for
τ is dependent on both the bandwidth, B, of each link and the MTU of the network. To see why,
consider the extreme case where a user is occupying all of the bandwidth of a port i with MTU-sized
packets. The receiver on the other side of the link will receive packets at a period of τi = MTU

Bi
,

with OrbWeaver unable to inject any additional packets without impacting user traffic. Therefore,
unless otherwise noted, OrbWeaver uses τi = MTU

Bi
even if smaller IDLE packets would allow for

faster injection.

In the worst case when there were zero user packets and N egress ports, the resulting target IDLE-
injection rate is:

T =
N∑

i=1

Bi

MTU (2.1)

For reference, for a 32 port switch with B = 100Gbps and MTU = 1500B, the per-port inter-packet
gap, τi, is 120 ns, which results in T = 266.7Mpackets/sec.

Constraints. Complicating the injection of IDLE packets into the network are R2 and hardware
constraints on the throughput of each switch pipeline, defined in terms of both byte-level bandwidth
(N ×B) and packet-level bandwidth (proportional to the clock rate of the pipelines). For the latter,
switches typically provide guarantees up to a certain minimum packet size, and best-effort behavior
for very small packets.

2.3.1. Mechanism Overview

OrbWeaver’s IDLE-packet weaving leverages a combination of features found on our target platform:
data-plane packet generation, data plane programmability, and fine-grained arbiter/scheduler con-
figuration options. The switches’ onboard per-pipeline packet generator modules, in particular, form
a convenient substrate for our techniques. Using these modules, a network operator can create pack-
ets with predetermined content at a predetermined rate.
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In principle, one could configure the generators to create packets at a rate T (thus providing Orb-
Weaver with its consistent stream of packets to convert into IDLE packets). Unfortunately, in prac-
tice, these generators do not have nearly enough capacity to satisfy the requirements of OrbWeaver.
Moreover, blind injection of packets may interfere with the throughput, latency, or loss of user traffic.
Instead, OrbWeaver uses the selective amplification method described below.

1 Packet generation. The IDLE stream generation of OrbWeaver begins with a low-rate but pre-
dictable stream of generated IDLE packets. The focus of this process is to provide a ‘seed’ stream
with an emphasis on regularity; amplification up to T occurs later in the pipeline. More specifically,
the generator module is configured to send a packet every τmin

2 secs, where τmin is the minimum τi

of any port on the pipeline.

There are two important aspects of this seed stream. The first is that the rate is double that of τmin

in order to provide a degree of oversampling for the subsequent optimizations without sacrificing
guarantees on the eventual spacing of packets. The second is that the IDLE packets are configured
with a strict high priority at the ingress arbiter so that the packet will always be serviced as soon
as it is generated. While this implies that IDLE packets are preferred over user traffic in the ingress
pipeline, the low rate of this seed stream means that OrbWeaver incurs <1.5% overhead even for
the worst case of minimum-sized packets sent at τ100Gbps (denoting the optimal τi for a 100Gbps
link). More typical packet sizes and utilization eliminate the overhead.

2 Amplifying the stream on-demand. OrbWeaver takes the low-rate seed stream above and am-
plifies it, potentially up to the full rate T , by leveraging another hardware feature found in modern
switches: flexible multicast. In Figure 2.2, this behavior is implemented in the PRE, which can
replicate a packet descriptor to the egress queues at line rate.

Unfortunately, the naïve approach of replicating a packet to every egress queue every τmin seconds
can crowd out normal multicast packets and waste significant egress capacity. More specifically,
there are two instances where it is not necessary to multicast a packet to a particular port i:

1. If the port is slower than the maximum speed, then sending at τmin will be too fast by a factor
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of Bmax
Bi
.

2. If a user packet was already sent to the egress port recently, sending an IDLE packet is unnec-
essary.

OrbWeaver addresses both cases by oversampling the sending history of each port (at rate τmin
2 ) and

then selectively filtering/multicasting toward only the ports that need an IDLE packet. When a port
is has bandwidthBi < Bmax, the switch downsamples the IDLE packets by configuring two multicast
groups (one with port i and one without) and picking the one with i every ⌈Bmax

Bi
⌉ packets. Similarly,

if a port has sent a packet (user or IDLE) in the past τmin
2 seconds, we can select a multicast group

that does not contain the given port.

Concretely, this filtering step uses a single stateful register entry with a bit width equal to the number
of ports attached to the pipeline. In essence, the register is a bitvector where each bit represents
whether we have sent a packet to the associated port within the last τi

2 seconds. For every incoming
seed packet, if the associated bit is 1, we omit the port and flip the bit to 0; if the bit is originally 0,
include the port in the multicast and flip the bit to 1. Specifically:

user packet: filter_reg |= 1 << egress_port

seed packet: filter_reg ^= speed_mask

When all ports are the same speed, speed_mask is always 2N − 1; for hybrid configurations, the ith
bit is 1 for every ⌈Bmax

Bi
⌉ packets and 0 otherwise. After updating the register, OrbWeaver multicasts

the current seed packet to the multicast group specified by filter_reg (in particular, its value before
the xor)—if and only if bit i in the multicast group ID is 0, port i is included in the multicast.

In principle, a direct application of the above filtering step guarantees that the PRE will have enough
bandwidth for all user multicasts, assuming that each user multicast results in at most one packet
on each egress port. Two aspects of modern switch design potentially complicate this design.

The first is that today’s switches typically cannot support a unique multicast group for each of the
2N possible combinations of target ports. OrbWeaver addresses this by reducing the number of
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groups by coalescing ports into groups ofM such that, if any port in the set has its bit in filter_reg

set, the entire set receives the multicasted packet. This approach trades a factor of 2M reduction
in the number of multicast groups for a worst-case M−1

N -factor decrease in PRE bandwidth. The
second is that modern switches are often composed of different pipelines, each supporting distinct
packet generators, sets of registers, and groups of ports. Lack of visibility across pipelines means
that filter_reg may only track local sends, which can also lead to higher PRE usage.

We note, however, that in both of the above cases, OrbWeaver will only incur false negatives (and
no false positives) of user packet presence, thus satisfying R1. We also note that very few modern
networks are continuously multicasting to all ports at near line-rate.

3 Weaving the IDLE stream between user packets. After the stream is amplified, it reaches
the egress queues and pipeline of the switch. To bound the impact of the stream on user traffic,
OrbWeaver configures its packets to have a strictly lower priority than any other user traffic on the
same port. If there is user traffic to send, the IDLE packets will not impact them; if there is no
traffic to send, the IDLE packets will be sent at a minimum rate of τi per port i. The only potential
impact to the latency/throughput of user traffic is when an IDLE packet is scheduled just before a
user packet arrives, in which case the user packet will be delayed by at most pkt_size/Bi. The delay
is only incurred once per packet burst, which implies a bound on OrbWeaver’s end-to-end impact
on latency and throughput.

Upon arriving at the ingress pipeline of the downstream switch, the packets will be dropped. This
also has near-zero impact on user traffic as IDLE packets are only received when the upstream switch
has nothing to send.

4 Managing the packet buffer and egress queues. Finally, through the above process, there are
two primary places where IDLE packets can compete with user packets for memory in addition to
bandwidth. The first is the per-egress output queues that hold packet descriptors before they are
serviced by the egress pipeline. The second is the shared packet buffer that stores packet contents
until they are sent out on the wire.
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Figure 2.3: An empirical evaluation of the switch’s capacity to generate IDLE packets. Packets were
injected to all ports, but the graph depicts the observed inter-packet gap at only one of those ports.
Results are shown for both the target rate (Bi = 100Gbps, MTU = 1500B) and the maximum
achievable rate. y-axis omitted to protect confidential information.

To bound the impact of OrbWeaver on both resources, we statically carve the buffer using egress and
ingress buffer accounting mechanisms, respectively. For the former, we note that the queue for IDLE
packets (the lowest priority queue for the port) is distinct from those of user packets. This queue
only needs to be one cell deep as another IDLE packet is guaranteed to arrive in a timely fashion, and
thus, the impact on aggregate memory capacity is negligible. For the latter, we can likewise keep
the required buffer shallow because of the guarantees of the packet generation process. Specifically,
we can confine the IDLE packets to a fixed-size, non-shared region of the packet buffer. The buffer
only needs to have a depth equal to the sum of the egress, per-port IDLE-packet queues plus a small
amount of headroom for any potential cycle-level processing delays. This is < 0.01% of the total
buffer size of a typical modern switch.

2.3.2. Evaluating the Weaved Stream

In this section, we delve deeper into OrbWeaver’s potential impacts on user traffic. We do this
with the assistance of a prototype implementation on a 2× Wedge 100BF-32X testbed. Additional
experiments can be found in §A.6.

2.3.2.1 Can OrbWeaver Inject at Rate T ?

To demonstrate that our approach can achieve T on a fully provisioned switch, we validate it empir-
ically. Specifically, we configure a switch with all 32 ports active and running at a full 100Gbps. We
then configured the switch’s packet generator module to generate seed packets at a rate of 2/τ100Gbps
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and then multicast every other IDLE packet to all ports.

Figure 2.3 shows a time series of the interval between IDLE packets, as observed by the egress
pipeline of a single port. To record the series, we maintained a ring buffer (implemented via a data
plane register) of the difference between the current egress_global_tstamp and the previous. The
observations were maintained in the egress pipeline and for a single port (other ports’ results are
identical).

We find that, not only is the injected stream able to achieve τ100Gbps for every port simultaneously,
the observed rate is stable across packets. Further, increasing the amplification factor of the multicast
configuration enables IDLE packet generationmore than an order of magnitude faster than the target
interval, τ100Gbps. Among other implications, this means IDLE packet injection is robust to higher
bandwidth and lower MTUs, even without improvements to packet replication capacity.

2.3.2.2 Can OrbWeaver Bound Packet Gaps?

In addition to being able to generate IDLE packets at rate T , R1 also requires regularity in the form
of a bound on the gap between packets. We note that Figure 2.3 already demonstrates the regularity
of this gap on a switch without traffic. We also note that in the other extreme (when ports are always
congested), R1 is trivially satisfied.

In this section, we extend these results to a network with burstiness and varying levels of traffic.
Specifically, we use a hardware testbed consisting of twoOrbWeaver-enabled switches (A andB) and
a set of servers connected to A. User traffic is passed hosts→A→B with amplification to fully utilize
the ports at B. For this experiment, we used tcpreplay and pcap traces from an ISP backbone [10]
and a cloud data center [48]. We set up a register in the ingress pipeline of the downstream switch
B to record the distribution of the interval between consecutive packets.

Figure 2.4 shows the results for a single 25/100Gbps port. Without OrbWeaver, very few intervals
are under τ for the target link speed, and the tail is very long. OrbWeaver, on the other hand, is
able to weave in IDLE packets to guarantee an upper bound on the packet interval regardless of the
original traffic pattern. In particular, for a configured generation interval of tns, out of 2.14×109
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Figure 2.4: Observed intervals between packets with/without OrbWeaver’s weaved stream. The
dotted line shows the ideal period τ for each link speed. Without OrbWeaver, the maximum interval
was >100s of ms but we truncate for readability.

interarrival periods, the maximum observed interval was (t + 3)ns (observed for only 32 intervals).
The discrepancy is likely due to either clock drift or the aforementioned cycle-level processing delays.
Notably, the presence or absence of cross traffic had negligible effect on the frequency of these 3 ns
outliers so in practice, we can set t = τ − 3 and achieve reliable results.

Explanation. The regularity of OrbWeaver’s weaved stream derives from the architecture of the
switch and the mechanisms of OrbWeaver. From the components of Figure 2.2, the parser used by
the packet generator is separate from those of the external traffic, the ingress pipeline grants strictly
higher priority to the generated packets over external traffic (user or IDLE), and the packet buffer
protects IDLE packets from interference through static reservations for worst-case capacity. When
combined, a generated IDLE packet can only be delayed through HoL blocking when an external
packet arrives just before the generated packet. For unicast packets, this is a 1-cycle delay; for full
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Figure 2.5: The impact of IDLE packets on user traffic at the ingress pipeline with/without a gener-
ation rate of 2/τ100Gbps.

broadcasts, this is up to an N -cycle delay (which is short for today’s high-speed networks).

At the egress pipeline, the priorities are reversed: IDLE packets are set to a strictly lower priority
than user traffic. This change stems from a change in objective: in the egress pipeline, it is no longer
necessary for the IDLE packets to be sent at a precise rate; instead, the goal is to send any packet at
above the minimum rate, τi. Choosing a user packet instead of an IDLE one can only decrease the
inter-packet gap.

Note that, in a Tofino, these priorities (unlike those at the ingress) are only effective within their
respective ports. Thus, the switch will send a low-priority packet on port i even if there is a higher-
priority packet queued for a different port. As long as the average packet size is above the minimum
for line-rate processing, ports can be considered in isolation.

2.3.2.3 Do IDLE Packets Affect External Traffic?

As important as the impact of cross traffic on generated IDLE packets are the impacts of the generated
packets on (1) user traffic and (2) incoming IDLE packets. A significant impact on (1) implies
violations of R2; on (2), it implies inaccuracy in inter-arrival times and potential violations of R1.
We discuss potential impacts in the two pipelines separately.

Ingress pipeline. While OrbWeaver’s packet prioritizationmeans that IDLE packets will be preferred
over external traffic in the ingress pipeline, its use of multicast amplification reduces their impact to
1.5% of maximum packet-level capacity, with zero impact to byte-level capacity.
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Figure 2.6: The impact of IDLE packets on the latency of user traffic at the egress pipeline. Results are
shown for various levels of average utilization. 0% and 100% are not shown as OrbWeaver becomes
trivially optimal. To provide an upper bound on the impact, we disable adaptive ingress filtering
and populate the pipeline with only small (64B) user packets. A real OrbWeaver deployment would
have much lower impact.

To evaluate the practical effects of this overhead, we replayed a real-world packet trace over an
ingress pipeline of an OrbWeaver switch. The packet trace was generated using tcpreplay and
link-level packet traces captured from 10Gbps Internet routers [10]. To saturate the pipeline, we
sped the traces up to match our setup’s 100Gbps per-link bandwidth and replicated them to fill the
switch.

We compare two cases. In the first, only the above external traffic is present. In the second, we used
the exact same traces but, in parallel, we injected IDLE packets into the same pipeline just as we did
in the previous subsection. In both cases, we measured the packet count and interarrival times of
user packets in the ingress pipeline with the help of stateful registers that aggregate both statistics.

We find that, for the speeds and packet sizes in the evaluated trace, the throughput and congestion
loss of user traffic is the same whether the generated IDLE stream is present or not. The only metric
that is impacted is latency, where a slight delay can be introduced each time a generated packet
is processed one ‘clock cycle’ ahead of a user packet; however, this is minor and mitigated by the
low frequency of IDLE packet injection. Figure 2.5 depicts the cumulative impact of this delay using
a histogram of the packet interarrival time of the traces, with and without the IDLE stream—the
majority of the differences are due to randomness in tcpreplay between executions, rather than
OrbWeaver.
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Figure 2.7: The power draw of a OrbWeaver switch compared to that of an idle (baseline) and a
maximally utilized switch. Y-axis is normalized to the average power draw of the baseline.

Egress pipeline. The benefits of the amplification strategy to contention mitigation stop at the PRE,
but two other factors take its place in ensuring that user traffic is not impacted in the egress pipeline.
The first factor is the filtering step that was introduced in Section 2.3.1, which prevents superfluous
usage of both the PRE and egress pipeline when the egress ports are already occupied. For IDLE
packets that are not filtered in the ingress pipeline, the second factor is the strict prioritization of
user traffic over IDLE packets of the same port, also introduced in Section 2.3.1. The second factor,
in particular, provides an upper bound on the impact of the IDLE packets as long as the user traffic
respects the minimum average frame size requirements of the switch specification (see Appendix A.4
for a formal analysis).

To truly stress these mechanisms, we evaluate an extreme scenario in which multiple hosts send
minimum-size (64B) packets toward a single egress port and OrbWeaver’s filtering mechanism is
disabled. This situation is not possible in OrbWeaver, but is helpful in demonstrating the efficacy of
egress prioritization for protecting user traffic. The results verify the analysis above, even for high
user-traffic utilization. For comparison, we also show the impact of an IDLE stream operating at the
order-of-magnitude-higher maximum rate of Figure 2.3 but still set to low-priority. Again, across all
experiments, throughput was unaffected.

2.3.2.4 Does Injection Affect Power Usage?

Finally, we investigate the impact of weaving on the power consumption of today’s switches. A
natural concern is that the continuous stream of packets will increase consumption; however, we
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find the actual impact is minimal as the underlying Ethernet MAC already continuously sends IDLE
symbols.

To evaluate this, we used a P3 Kill-A-Watt Electricity Usage Monitor (Model P4400) to measure
the total power draw of a Wedge100BF-32X programmable switch. The monitor sits between the
switch’s power plug and its power outlet and can measure wattage to within 0.2–2.0%. To emulate
the switch’s deployment into a network of programmable switches, we connect every port on the
switch to a second switch that logically functions as 32 neighboring switches. We test three distinct
configurations:

• Baseline: All ports on the switch are connected at 100Gbps; however, the switch is otherwise
inactive, i.e., there is no incoming traffic nor any IDLE packets.

• Only OrbWeaver: Same as above, but with OrbWeaver’s IDLE stream generation enabled on all
switches. The switch is, thus, both sending and receiving packets at T .

• Maximum utilization: The worst case scenario, where the switch is both sending and receiving
user packets at the maximum rate and generating IDLE packets (that are eventually dropped in
the ingress pipeline).

Figure 2.7 shows the power draw of each configuration over a 1min period. OrbWeaver’s transmis-
sion of packets at rate T increases the average power draw of the switch by <2%.

2.4. OrbWeaver Use Cases

Figure 2.8 outlines the general structure of a P4 program that uses OrbWeaver. Whereas a standard
P4 program processes a stream of user packets, an OrbWeaver P4 program processes a weaved
stream of user and IDLE packets. OrbWeaver programs can append/read information from the
payloads of the IDLE packets (which appear on the wire as a special EtherType) or infer statistics
from the timing of the weaved stream. In either case, the content of IDLE packets can bemanipulated
just like any other packet (metadata like the drop decision, priority, or egress port should not be
changed).
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Figure 2.8: Structure of a P4 program that processes a weaved stream. The ingress pipeline extracts
information from the weaved stream, then processes user and IDLE packets separately. The egress
pipeline processes user packets and transforms seed packets into IDLE packets. Pipelines can com-
municate using registers that are synchronized with either seed packets or the switch CPU, as shown
by the thick lines.

In typical usage, the receiving switch will process, record, and drop incoming IDLE packets before
the end of the ingress pipeline. In most cases, the IDLE packets bypass the normal pipeline logic
and, thus, will not affect user byte/drop/error counters. Separately, they use either (a) an agent on
the switch CPU [193] or (b) a locally generated IDLE seed packet to transfer data from the ingress
to the egress pipeline before sending to the downstream switch. Together, they facilitate multi-hop
communication over IDLE packets.

In this section, we detail three example use cases of OrbWeaver (see §A.1 for others). For each
example, we consider a recently proposed network system, and we explore how well OrbWeaver
can approximate it without introducing any additional impact on user traffic. We note that, in some
cases, this restriction can result in suboptimal designs (i.e., imposing on user traffic may result in
better overall performance, even if it incurs overhead). Rather, we ask: how far can operators go
before needing to ever consider the choice between network throughput and features?

2.4.1. Fast Failure Detection

Failures of network components are common in large networks where the number of devices involved
ensures a constant flow of incidents. Reasons for the failures include overheating components, power
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instability, bit flips in the signal, loose transceivers, bent fibers, or any number of other causes [210,
185, 209, 73]. In the end, however, the symptom of many of these failures is the same: lost packets
in the network.

Thus, as the first steps toward mitigation, quickly detecting and quantifying packet loss is critical
to maintaining high availability and stringent SLOs, particularly as networks improve in both band-
width and reaction time such that control-plane processing is no longer the sole bottleneck [193, 55,
124, 105, 127, 129]. Unfortunately, as mentioned in §2.2, common detection approaches—periodic
keepalives or pings—force network architects to sacrifice detection latency to constrain overheads.
Moreso as pings are traditionally prioritized over user packets to minimize false positives.

Even recent systems like NetSeer [207] that track user-packet loss inband (without injecting ad-
ditional packets) suffer from this tradeoff. For example, NetSeer’s choice to not inject additional
packets means that the network is necessarily slow to detect a black hole (differentiating from a
lack of demand requires CPU coordination to compare the flow counters of adjacent switches).
Likewise, their choice to tag every packet with a sequence number incurs a bandwidth overhead of
0.3%∼6.3% in return for higher detection granularity (unless there are previously unused bits in
the header and we cannot change the data plane to remove them).

2.4.1.1 An OrbWeaver Redesign

Taking NetSeer as a base, we can replace its inter-switch communication with an OrbWeaver-in-
fluenced design to eliminate bandwidth overheads and significantly improve detection time. We
refer readers to the original paper [207] for full details of the existing system but summarize the
relevant components as follows. NetSeer records the 5-tuple of each packet in the egress pipeline
using per-port ring buffers and tags it with a 4-byte sequence number. The downstream switch stores
the last observed sequence number. Upon detecting a gap (e.g., packet 14 after packet 12), it sends
3 duplicate and high-priority drop notifications to the upstream switch for each missing sequence
number. If the upstream switch receives at least one such notification, it will use the records in the
ring buffer to generate a flow event for the missing packet, which will be compressed/summarized
for the management plane.
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In NetSeer-OW, switches maintain per-port hash tables that, like NetSeer, record the 5-tuples and
packet counts of passing flows (using the 5-tuple hash as the index). The caches are maintained
in the egress pipeline of each upstream switch as well as the ingress pipeline of each downstream
switch. As channels are FIFO and the tables use the same size and deterministic hash function, their
content should always be identical. The only exceptions occur after a packet loss, at which point
either a counter or a 5-tuple will differ.

In this re-design, user packets are not tagged with any additional data nor does it require triple-
notifications. Instead, the upstream switch will opportunistically embed in IDLE packets psuedo-
randomly selected cache records6. If the downstream switch finds that a record differs from its
local copy, it will generate an event for the contained 5-tuple. It will also generate an event if
packets stop arriving, which is detected with locally generated IDLE seed packets that scan per-port
weaved-stream counters. After NetSeer-OW compresses/filters these events, the control plane sends
the results over a low-priority TCP connection to the central controller.

Note that, in addition to exploiting the IDLE stream to carry flow information, (R1)’s guarantee of
packet arrival rates enables provably optimal detection speed of link failures. In principle, OrbWeaver
can trigger an alert if the ingress_mac_tstamp of any two consecutive packets is≤ τ . While that level
of granularity may be too aggressive for many networks, we note that recent proposals for data plane
rerouting have made detection speed a bottleneck [129, 124, 55, 105], particularly if a goal is zero-
loss failure recovery. In the end, the point is that OrbWeaver can provide arbitrarily precise failure
detection/statistics for current and future networks.

Dealing with a lack of sending opportunities. While extended periods of maximum utilization
are rare in most networks [204, 166, 10], NetSeer-OW can still provide useful properties during
these extreme conditions. For example, for failure detection, a downstream switch in a fully utilized
network can immediately detect a packet drop by examining the gaps between adjacent packets (a
drop occurred when the gap > τ).

6To improve the update rate, we can pack up to three 5-tuple-counter records (IPv4 and counters of 3 B) in each
packet. To handle register access limitations, we can pack the records or split the table across multiple arrays.
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Flow attribution is slightly more challenging, with the chief concern that the switch evicts the flow
before including it in an IDLE packet. We can quantify the probability of this happening using the
formalization in §A.5. For reference, using the assumptions of §A.5, average utilization of [166, 10],
and flow cache performance of [170], ISP routers with 128 cache entries per port would have a
P (notified) ≈ 0.72

0.72+0.28∗0.45/3 = 94.4%. A data center switch with 128 cache entries would have
P (notified) ≈ 0.75

0.75+0.25∗0.16/3 = 98.2%, or with 512 entries P (notified) ≈ 0.75
0.75+0.25∗0.05/3 = 99.4%.

Benefits. Compared to the original NetSeer design, the primary benefit of the OrbWeaver augmenta-
tion is to completely eliminate all sources of bandwidth overhead—in essence, we can apply NetSeer
for ‘free.’ In particular, it eliminates the overhead of sequence number tagging (0.3%∼6.3%) of ca-
pacity; the replicated, high-priority failure notifications (up to 100% of reverse link capacity); and
the impact on user traffic of the event reports. Beyond overhead, it also improves the speed to detect
inter-switch failures, particularly during periods of low utilization.

Table 2.1 shows the data plane memory consumption of both systems. Additional memory increases
P (notified), however the relationship is different for each system. As a concrete data point, con-
sider the coverage goal highlighted in the original NetSeer evaluation [207]—to correlate 90% of
packet loss events with flows. For a 64×100Gbps switch and a similar estimation strategy as above,
NetSeer-OW meets this goal with 320KB of SRAM (128 cache slots per port) in both ISP and data
center workloads. On the other hand, assuming the network’s minimum packet size is 64B, NetSeer
requires approximately 384KB of SRAM to meet the 90% coverage objective because it must allocate
enough ring buffer slots per port (256) to ensure that sequence numbers are not overwritten before
switches have a chance to correlate their results.

2.4.1.2 Evaluation

Detecting failures more quickly. To quantify how quickly NetSeer-OW can detect a failure, we
deployed NetSeer-OW to a hardware testbed and randomly disconnected a link between the two
switches A and B 100 times to emulate 100 fail-stop link failure events. To test the limits of our
approach, we configured the probes to mark a τ -timeout failure as soon as even a single packet loss
is detected.
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NetSeer NetSeer-OW

Data structure size (per-port) 256 64 512 128

SRAM (KB) 384 192 896 320
Number of sALU/register arrays 6 6 7 7

Table 2.1: Data plane resource usage for typical NetSeer and NetSeer-OW configurations on a
64×100Gbps switch.
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Figure 2.9: (a) the min, Q1 (p25), median, Q3 (p75), and max of OrbWeaver’s time to detection
across 100 failure events. (b) OrbWeaver’s time to recovery (<1µs) from a bidirectional failure of
a 25Gbps link. A total of two packets are lost.

Figure 2.9a shows the detection time of trials for 10, 25, and 100Gbps links. NetSeer-OW achieved
100% precision and recall. It also consistently detected the failure within 10s of nanoseconds of
the optimal time. In contrast, typical configurations for protocols like Bidirectional Forwarding
Detection (BFD) are closer to 10s or 100s of milliseconds; even recent data plane detection sys-
tems [124, 85] are several orders of magnitude slower than NetSeer-OW can achieve.

Figure 2.9b shows the resulting seamless recovery when NetSeer-OW is combined with a simple
data plane rerouting mechanism. In the experiment, we induce a bidirectional failure in one link
between A and B, and we configure B to failover to a backup path as soon as it detects an error.
On top of this setup, we send a steady stream of packets on the target link at a relatively high rate
of 5M packets per second. A total of two packets were lost—likely in-flight.

End-to-end impact. To evaluate the end-to-end impact, we emulate a leaf-spine topology with 2
leaf switches L1, L2 and 2 spine switches S1, S2. All switches run OrbWeaver with pre-computed
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Figure 2.10: (a) shows the transfer completion time comparison for original, NetSeer-OW, and BFD
(100ms) in a simple leaf spine topology. With NetSeer-OW’s fast detection and data plane reroutes,
the impact is minimal.

data plane backup paths. Between L1 and L2, we insert a variable fiber optic in-line attenuator
capable of 0∼60dB attenuation. On hosts connected to the leaf switches, we run TCP transfers of
varying sizes using iperf, during which we increase attenuation from zero until failure and examine
the impact over the transfers experiencing the events. As Figure 2.10a shows, with OrbWeaver, the
impact of failure is negligible with respect to completion time. In contrast, with BFD, failures cause
the 100MB transfers to take over 4× longer and the 1GB transfers to take over 30% longer.

2.4.2. Time Synchronization

Time synchronization is another common task in modern networks. Like failure detection, time
synchronization requires coordination between adjacent switches, and many other applications rely
on its accuracy [188, 60, 190, 150].

Unfortunately, the most common methods for synchronizing time between adjacent machines in-
volve the computation of One-Way Delay (OWD) using periodic, high-priority echo requests/re-
plies [71, 124, 3]. Here too, architects are presented with a tradeoff: clock frequency drifts imply
that the faster we send echoes, the more closely we can bound the clock offset and the more accurate
the synchronization. Protocols like DTP [117] that integrate the protocol into the physical layer can
circumvent this overhead but require hardware changes.
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2.4.2.1 An OrbWeaver Redesign

The state-of-the-art in time synchronization for programmable switches is DPTP [103]. In it, two
adjacent switches (a client, A, and a server, B) compute the offset of their local clocks by leveraging
switches’ ability to embed timestamps into each packet during different stages of packet processing.
Host and multi-hop synchronization are also possible using multiple strata. The protocol calls for
three messages in each round of the protocol: (1) a DPTP request [A → B], (2) a DPTP response
[B → A], and (3) a DPTP follow-up [B → A]. All three messages are high-priority to eliminate
queuing delay.

(1) is timestamped using the Tofino egress_deparser_tstamp and ingress_mac_tstamp of A (t1) and
B (t2), respectively. (2) is timestamped using the same counters inB (t3) andA (t4), respectively. In
a traditional clock synchronization protocol, the offset would be computed as (t2+t3)−(t1+t4)

2 . Unfor-
tunately, we note a fundamental limitation of today’s programmable switches—that the egress_de-

parser_tstamp does not capture the actual point of packet serialization. Thus, the computed offset
is subject to variable delays as a result of egress MAC contention. As a result, DPTP introduces the
third packet, the follow-up, which embeds a more accurate egress serialization timestamp (obtained
out-of-band). Again, we refer interested readers to [103] for full details.

An OrbWeaver-inspired redesign can obviate the need for the third, follow-up message by inferring
the egress MAC contention from the weaved stream (and only using results with no contention). This
allows us to use the traditional two-way protocol of Figure 2.11. It can also eliminate the impact of
the remaining messages using opportunistic sends.

Opportunistic synchronization: Rather than relying on high-priority echoes, a system can rely solely
on OrbWeaver’s IDLE packets to piggyback timestamps. In particular, whenever A has an opportu-
nity, it sends a request to B on an IDLE packet with a field for t1. Upon receiving the packet, B

maintains a cache for the most recent values of t1 and t2. Separately, whenever B has an opportu-
nity, it sends the most recent values of t1 and t2 along with the local egress_deparser_tstamp in t3.
In an empty network, A can calculate the clock skew as (t2+t3)−(t1+t4)

2 just as DPTP but with much
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Figure 2.11: Time sync in DPTP-OW, using IDLE packets. When the difference between t2 and t3 is
small, A treats the message as part of an INIT phase and calculates o, the clock offset, and d, the
one way delay. When it is high, the BEACON phase uses the most recent d to track clock frequency
drift.

more frequent synchronization (leading to lower jitter, i.e., nominal error [5]).

A challenge with the above approach occurs in networks with high utilization. The traditional OWD
estimation method used above implicitly assumes that the clock drift is constant for the duration
of the protocol round; otherwise, the delays at the time of the request and response may not be
comparable due to clock frequency drift. In OrbWeaver, this can happen if there is congestion from
B to A; the gap between t2 and t3 can be unbounded, leading to inaccurate results.

We address this challenge by borrowing an idea from a different protocol, DTP [117]: the decoupling
of synchronization into INIT and BEACON rounds. If the time between t2 and t3 is sufficiently small,
the round is treated as an INIT round and A computes the offset as above. Otherwise, A treats the
message as part of a BEACON round where it takes d, the OWD computed from the last INIT round
(d = (t4−t1)−(t3−t2)

2 ), and it computes a new offset: o′ = t′
4 − t′

3 − d.

Selective synchronization: Finally, to remove the need for DPTP’s third ‘follow-up’ message, we can
exploit the implicit information contained in the woven stream’s timing. The underlying intuition is
simple: if the gap between an IDLE packet and its preceding packet is less than τ , the IDLE packet
may have encountered contention at the egress MAC. In this case, the packet’s timestamp may be
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unreliable. DPTP corrects for this contention with the follow-up message; OrbWeaver simply ignores
these protocol rounds. While this filtering effectively requires that usable gaps be> τ ∼ 2τ , it greatly
improves the accuracy of the protocol while still permitting frequent re-synchronization in modern
networks.

Dealing with a lack of opportunity to send. The above protocol fully synchronizes switches when
both links have concurrent IDLE gaps. The protocol also includes support for correcting small drifts
when only one direction has a gap (by adjusting to the fastest clock in the network). We note that
in a network with multiple paths, we can configure synchronization to propagate among any one
of those paths. Thus, if we view the network as a directed graph, the only time a switch may lose
synchronization is if sufficient links are maintaining 100% utilization that the links form a cut of the
graph. In the end, if operators need assurances, they may need to send higher-priority messages if
too much time elapses; however, we can extend our techniques so that the messages only need to
be prioritized above the lowest-priority user traffic—high-priority, interactive applications would be
unaffected.

Benefits. As long as there is occasional usable bandwidth in the network, OrbWeaver again elim-
inates all bandwidth overheads without sacrificing accuracy or nominal error. When the network
is underutilized, it actually provides similar re-sync intervals as DTP but using commodity PISA
switches.

2.4.2.2 Evaluation

Following prior work, we evaluate DPTP-OW’s precision [117, 180] (defined as the maximum clock
skew in the network), as well as its jitter [5] (defined as the distribution of measured offsets or nom-
inal error). Again to match prior work, we evaluate these in a two-switch testbed during a 20min
collection for 10Gbps link with a medium workload (a CAIDA trace with 25% average utilization)
and a heavy workload (the same trace sped up to ∼80% average utilization). We compare to both
DPTP (with 2000 requests/sec) and PTP. For PTP, prior work has suggested message frequencies
ranging from 15ms to 2 s [3, 124, 27, 117]; we pick two points in this range: 15ms as a lower
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Figure 2.12: (a) shows the precision for different synchronization protocols and a heavy workload
(∼80% CAIDA user traffic). (b) shows the CDF of observed offsets (absolute value) for DPTP-OW
uponmedium and heavy loads for 10Gbps link (τ = 1200ns), w/ or w/o selective sync. OrbWeaver
achieves a precision of 11 ns even under heavy user traffic.

bound and 750ms per the evaluation baseline [117].

We observe that, even at high loads, DPTP-OW can achieve 10 ns bounds in both precision (Fig-
ure 2.12a) and jitter (Figure 2.12b) without imposing on user traffic. These bounds are similar to
or better than DPTP, which incurs high-priority bandwidth overhead. Preliminary tests on higher-
link speeds indicate that precision will only improve as τ decreases. In Figure 2.12b, we further
observe that selective synchronization is an effective technique to reduce the message complexity of
the protocol while maintaining low jitter and good precision.

2.4.3. Congestion Feedback

Finally, many modern networks rely on robust load balancing algorithms to efficiently utilize their
multiple paths. There are numerous approaches to load balancing, but among them, adaptive ap-
proaches [36, 105] are attractive as they can react to current network conditions when making
balancing decisions.

A state-of-the-art approach is taken by HULA [105], which proposes a protocol for adaptive data
center load balancing using programmable switches. In HULA, every switch maintains two tables:
a bestHop table that stores the best next-hop to each destination ToR, and a pathUtil table that
stores the utilizations of those next-hops. Destination ToRs periodically flood the network with high-

41



priority probes that traverse all paths (in the reverse direction, dst-to-src) and track the bottleneck
link utilization of the best such path—intermediate switches update their bestHop/pathUtil tables
accordingly.

As in the previous use cases, congestion feedback mechanisms like the one in HULA force a trade-
off between overhead and the availability/freshness of congestion data. HULA eventually sets the
probing interval to 1-RTT and makes a case for why that is a good tradeoff, but OrbWeaver can
potentially provide similar performance using only opportunistic sends.

2.4.3.1 An OrbWeaver Redesign

An OrbWeaver-inspired redesign replaces the high-priority HULA probes with OrbWeaver’s oppor-
tunistic IDLE packets. There are two new challenges. The first is building a ‘flood’ communication
model on top of OrbWeaver’s opportunistic sends. The second is dealing with congestion on the
reverse path and the resulting lack of new information.

Per-path propagation: For any path through the network, there are two types of hops: ingress-to-
egress hops (that bridge the pipelines of a local switch) and egress-to-ingress hops (that bridge
adjacent switches).

For the former, HULA-OW leverages the switching ASIC’s PCIe interface to asynchronously mirror
the pathUtil table between the ingress and egress pipelines of a single switch. We use Mantis [193]
to mirror the registers, which completes a mirror operation every ∼20µs without impacting data
plane throughput. For the latter type of hop, the system simply sends the contents of pathUtil

using IDLE packets. To make this process more efficient, we can stripe the pathUtil table across m

registers and pack m (dstToR, pathUtil) records into each IDLE packet round-robin style. In an
unloaded network, the full table is transmitted in Rτ

m time, where R is the number of ToRs in the
data center. We note that even for R = 1000 and m = 1 (i.e., an unoptimized update rate), this is
still more frequent than HULA.

Stale information: If there is persistent congestion on the reverse path, utilization information may
not be able to propagate across the network; the switch adjacent to the congestion will know the
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Figure 2.13: Avg. FCT (normalized to ECMP) for HULA and HULA-OW upon different loads of
DCTCP and VL2 traces.

utilization of the adjacent link, but not downstream links. To handle this case, HULA-OW uses a
simple aging mechanism. Specifically, it will track the EWMA of all observed pathUtil values for
every destination ToR (in addition to the minimum). After each RTT with no information from the
best path, it will shift the best path’s pathUtil value toward the average (with a lower bound of
the adjacent link’s utilization). If no information comes from any neighbor for several RTT and the
adjacent links are all equal, the switch will fall back to random flowlet placement.

Dealing with a lack of opportunity to send. We note that the effect of the above metric-aging
strategy is that bestHop will be quickly overwritten by the ‘next-best hop’ whose reverse path has
opportunities to send. Assuming that at least some congestion information gets through, HULA-OW
will still provide substantial benefits due to properties like the power of two choices [139]. In the
worst case, it achieves equivalent performance to flowlet ECMP.

Benefits. Across all regimes, HULA-OW eliminates the probe overhead on network bandwidth. In
networks with low utilization or high burstiness, it provides more frequent utilization updates than
HULA in addition to increasing the peak usable bandwidth (see below).

2.4.3.2 Evaluation

Performance. We evaluate HULA-OW in NS-2 using the same FatTree topology as the original paper
(Figure 4 of [105]). Also like HULA, we leverage synthetic workloads based on web-search [34] and
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data-mining [74]) and configure HULA to probe at a 200µs interval. Figure 2.13 shows the avg.
FCT (normalized to ECMP) for HULA and HULA-OW.

Despite the frequent periods of full utilization in these workloads (especially at high average load),
we observe that HULA-OW is able to find sufficient gaps between packets to efficiently transfer
utilization information. Overall, HULA-OW is able to provide comparable or better performance
than HULA in all of the tested cases, even in the presence of very high average utilization. The
performance is also always either equivalent or better than the ECMP baseline.

Overhead reduction. The bandwidth overhead of HULA probes is given by [105]:

probeSize× numToRs× 100
probeFreq × linkBandwidth

(2.2)

With 500 ToRs, probeFreq=200µs, probeSize=64B, and 100Gbps links, HULA occupies 1.6% of
the network’s bandwidth. In contrast, HULA-OW occupies close to zero of the network’s usable
bandwidth and only 1.5% of the packet-level capacity of the ingress pipeline (which HULA’s probes
also consume).

2.5. Related Work

Leveraging unused resources. OrbWeaver is not the first system to propose the opportunistic use
of leftover resources. Indeed, many applications of priorities are in a similar spirit. Even in contexts
outside of computer networking, others have used low-priority background tasks and spot VMs to
harvest unused CPU cycles and memory [37].

In networking, close related work includes software WANs like SWAN [86] and B4 [94], which di-
vide traffic into classes that range from interactive to background—interactive traffic is given priority
while background traffic soaks up any remaining bandwidth. These systems successfully provide op-
portunistic bandwidth utilization but focus on end-host data. As explained in §2.2, these approaches
can leave parts of the network unutilized due to both application traffic patterns and structural bot-
tlenecks. OrbWeaver is, thus, complementary to these approaches and can be used to reclaim the
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remaining bandwidth for intra-network coordination.

Prior work has also applied similar techniques to lower layers, for instance, in the case of Ether-
net’s IDLE symbols or F10’s rapid heartbeats [129]. F10, in particular, proposed a failure detection
mechanism that is close to OrbWeaver’s in which devices continue to send traffic even when idle.
In comparison, OrbWeaver’s contribution is make the idea practical on high-speed programmable
switches, to closely examine the resulting impacts on switch configurations and user traffic, and to
show how to seamlessly integrate the weaved stream into a spectrum of applications beyond the use
case of F10.

Applications of OrbWeaver. OrbWeaver also builds explicitly on prior work that improves networks
with coordination, signaling, and probes. We refer readers to the relevant parts of §2.4 for a dis-
cussion of the systems on which OrbWeaver builds, and to the original papers for a more complete
examination of related work for our applications.

In general, however, OrbWeaver improves on much of the prior work by providing comparable or bet-
ter performance with near-zero overhead. Exceptions include systems like F10 [129] and DTP [117],
which use hardware support to eliminate protocol overheads. Asmentioned above, OrbWeaver’s con-
tribution is to generalize the concept and demonstrate a practical framework for it on commodity
network devices.

2.6. Conclusion

Must data plane applications always choose between coordination fidelity and bandwidth overhead?
OrbWeaver demonstrates that, somewhat surprisingly, they do not. To that end, we introduce Orb-
Weaver, a framework for opportunistic coordination in a manner that does not affect user traffic
or switch power consumption. Using three recently proposed systems, we show how to leverage
OrbWeaver to eliminate their bandwidth overheads while maintaining their efficacy.
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CHAPTER 3

RECYCLING SWITCH RESOURCES FOR FLEXIBLE, SUB-RTT REACTIONS

Simplicity is the ultimate sophistication.

Leonardo da Vinci

This chapter was previously published in press as Liangcheng Yu, John Sonchack, and Vincent Liu.

Mantis: Reactive programmable switches. In Proceedings of the ACM SIGCOMM 2020 Conference (SIG-

COMM 2020). The dissertation author led all phases of the project, from idea development to system
prototyping and writing.

Abstract. For modern data center switches, the ability to—with minimum latency and maximum
flexibility—react to current network conditions is important for managing increasingly dynamic
networks. The traditional approach to implementing this type of behavior is through a control plane
that is orders of magnitude slower than the speed at which typical data center congestion events
occur. More recent alternatives like programmable switches can remember statistics about passing
traffic and adjust behavior accordingly, but unfortunately, their capabilities severely limit what can
be done.

In this chapter, we present Mantis, a framework for implementing fine-grained reactive behavior on
today’s programmable switches with the help of a specialized reactive control plane architecture.
Mantis is, thus, a combination of language for specifying dynamic components of packet processing
and an optimized, general, and safe control loop for implementing them. Mantis provides a simple-
to-reason-about set of abstractions for users, and the Mantis control plane can react to changes in
the network in 10s of µs.

3.1. Introduction

Modern data center networks are becoming increasingly dynamic. Their switches, in addition to
providing simple forwarding functionality, are often expected to change their packet processing be-
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havior in reaction to fluctuating network conditions, e.g., to distribute traffic [35, 72, 182, 93],
handle failures [128, 126], implement flow control [6, 140, 82], or apply expressive security poli-
cies [171, 102, 119]. For each of these tasks, reacting to the current state of the network is critical
to maintaining strict Service-Level Objectives (SLOs).

Parallel to this trend has been a realization that the majority of congestion events in today’s data
centers are microscopic in duration. For instance, [203] found that, in one production data center,
90% of continuous periods of high utilization lasted for less than 200µs. Studies of other data
centers have shown similar levels of volatility in network traffic over small timescales [48, 155].

As a result, recent work has proposed pushing an increasing amount of adaptive behavior into the
network devices themselves. Load balancing is one such example. While switches have long been
able to statically spread load over the network using mechanisms like ECMP, microbursts and other
transient events provide a compelling case for makingmore complex routing decisions locally at each
device, where it is possible to react at very small timescales [35, 72, 6]. This is in contrast to more
traditional OpenFlow-style approaches, which rely on a relatively slow control loop passing through
a centralized controller. Similarly reactive systems have been proposed for other use cases [128,
102, 119, 186].

The cost of faster reaction time in these systems? For many, it is custom hardware modifications
that add the features directly into the data plane [72, 128, 35]. Unfortunately, developing these
custom ASICs is both extremely expensive and time-consuming. Programmable switches provide
a promising alternative, allowing users to integrate some amount of statistics gathering and com-
putation into the packet processing pipeline, but as we describe in §3.2, the limitations of today’s
programmable switches are well known and difficult to overcome, despite sustained efforts from the
networking community.

In this chapter, we present Mantis, a framework for implementing fine-grained reactive behavior in
today’s programmable switches. Like traditional network architectures, Mantis relies on the data
plane to perform packet processing and the control plane to implement arbitrary control logic. Un-
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� �
malleable value value_var { width : 16; init : 1; }
malleable field field_var {

width : 32; init : hdr.foo;
alts {hdr.foo, hdr.bar}

}
malleable table table_var {

reads { ${field_var} : exact; }
actions { my_action; drop; }

}
action my_action() {

add(${field_var}, hdr.baz, ${value_var});
}
reaction my_reaction(reg qdepths[1:10]) {

uint16_t current_max = 0, max_port = 0;
for (int i = 1; i <= 10; ++i)

if (qdepths[i] > current_max) {
current_max = qdepths[i]; max_port = i;

}
${value_var} = max_port;

}� �
Figure 3.1: An example P4R code snippet with fields, values, and a table that can be modified at
runtime using fine-grained reactions. malleable variables are annotated as such. Malleable field
and value variables are referenced as ${var}.

like traditional architectures, the Mantis control plane is designed to—at the granularity of 10s of
µs—continually measure and adjust the behavior of the data plane. Mantis is, thus, a combination
of (1) an extension to the P4 language, P4R, that helps to specify which parts of the data plane
should be malleable, and (2) the Mantis agent, an optimized control plane that provides both a
Turing-complete substrate and serializability guarantees for user-defined reactions. While Mantis’s
reliance on the CPU means that it cannot react to every packet, it enables sub-RTT reaction time,
which we show is sufficient for many applications.

Figure 3.1 shows an example P4R program. In it, we can observe a set of novel primitives that
can replace any of their traditional P4 counterparts: malleable values, which can be reconfigured at
runtime to take on any numeric value; malleable fields, which can be reconfigured to reference P4
packet/metadata fields; and malleable tables, which function as normal match-action tables, but are
augmented with support for fast and serializable updates. Mantis will continuously poll headers/s-
tate from the data plane and modify the above primitives based on user-specified reactions—each
iteration of the reaction loop allows arbitrarily complex reaction logic, is guaranteed to operate on
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Figure 3.2: Mantis. A P4R program is compiled into a pair of artifacts that support high-frequency,
switch-local reactions.

fresh data, permits concurrent traditional control plane operations, and provides serializable isola-
tion with respect to reads, writes, and packet processing. Our prototype and evaluation of Mantis
and the P4R language demonstrate their utility in a wide range of use cases that are difficult/ex-
pensive to implement otherwise.7 This chapter makes the following contributions:

• We introduce a novel extension to the P4 language, P4R, that treats reactions to current network
conditions as a first-class citizen. Along with this language, we present a Flex/Bison-based com-
piler that translates P4R into a pair of artifacts: (1) a valid but malleable P4-14 v1.0.5 program
and (2) C reaction code that polls data plane state and updates its malleable portions.

• We also develop the Mantis agent, a control plane architecture that can execute reactions quickly
and safely on a Wedge100BF-series switch. Depending on the reaction complexity, our current
implementation can react at a granularity of 10s of µs (less than an RTT in most networks) and
guarantees serializable isolation of both the measurements and updates.

• Finally, we present a series of use cases that demonstrate the utility of Mantis and dynamic re-
action. A surprising result of our work is that, not only does Mantis outperform centralized ap-
proaches, it can often outperform pure data plane approaches along important metrics.
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3.2. Background and Motivation

We begin this chapter by describing the architecture of today’s Reconfigurable Match Table (RMT)
switches with a focus on their capacity to react to current network conditions. To that end, RMT
switches are based on the abstraction of a pipeline of match-action tables. For a given packet and
table, the switch will index into the table using a subset of packets’ fields and metadata, extracting
an action that it will then apply to the current packet. Some switches may also include a small
amount of SRAM for stateful processing. The ‘reconfigurable’ of RMT refers to the ability to change
both the fields considered in the match as well as the action that is executed.

In this context, a reaction involves aggregating statistics (e.g., packet count or queue depth) from
across packets and then using those statistics to influence the processing of subsequent packets
(e.g., by redirecting a subset of them or tagging them with a computed value). In principle, an RMT
switch with stateful SRAM can be configured to do both of the above actions—measurement and
control—entirely within the data plane, and prior work has done exactly this for a subset of use
cases [77, 162]. In practice, however, today’s state-of-the-art RMT implementations suffer from a
number of well-known limitations, some of which may be fundamental to efficient ASICs [46] and
none of which are addressed by existing hardware. These include, but are not limited to constraints
on the operations allowed in actions (e.g., no multiplication/division, limited branching, etc.), a
fixed number of stages in the pipeline, restrictions of SRAM accesses to a single element/stage, and
a disconnect between ingress/egress pipelines.

When encountering one of these limitations, prior work has tended to take one of a few different
approaches. Some expend heroic efforts approximate the original algorithms in a way that fits
the constraints [162, 187, 161]. Others assume novel hardware primitives that add the appropriate
flexibility to the data plane [105, 88, 142, 163]. Some in the latter category might still be developed
into the former; however, for a general approach that works on today’s networks, workarounds
typically involve one of the following.

7The open-source P4R compiler can be found at https://github.com/eniac/Mantis.
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Resubmission and recirculation. The most direct way to circumvent the data plane limitations is
to send traffic back through the packet processing pipeline multiple times and, if necessary, across
pipelines [46, 163, 105, 88]. Theoretically, with enough recirculations, one can overcome limitations
in both computational power (achieving Turing-completeness) and memory flexibility (acquiring
access to any number of SRAM entries any number of times).

The primary drawback is that, each time a packet is recirculated, it potentially impacts other traf-
fic. Recirculating every packet twice, for instance, drops usable throughput of the switch to 38%;
three times reduces throughput to just 16% [184]. As modern switches are generally limited by
their packet-level bandwidth, the size of the recirculated packets is immaterial. Recirculated packet
processing also introduces the potential for violations of consistency/isolation.

Chaining/reloading the data plane. For cases where stage count is the main limitation, an alterna-
tive approach is to chain or swap in/out network functionality as needed [107, 186]. Unfortunately,
chaining imposes requirements on the network topology and workload, and installing a new data
plane program renders the switch temporarily unavailable (several seconds in current implemen-
tations). It, therefore, only applies for coarse-grained reactions and cases where sufficient capacity
exists elsewhere in the network.

Control plane assistance. Finally, we note that data planes have long been unable to implement all
of the functionality needed inside a network. Instead, they are typically augmented with a control
plane an onboard CPU to which the data plane can offload more complex tasks such as routing and
management when those types of packets arrive. The two planes communicate by passing messages
or, from the control plane, by polling counters and updating table entries—all of these can be done
without disrupting normal switch operations. Unfortunately, traditional control planes assume that
accesses are not time-critical and, thus, are generally orders of magnitude slower than the duration
of network events [128, 72].
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3.3. Mantis Design Overview

Mantis is a framework for fast, expressive in-network reactions on today’s RMT switches. Mantis
has two primary goals:

1. To enable general and flexible dynamic reactions that surpass the limitations of today’s switches—
measuring an arbitrary set of data plane metrics, computing an arbitrary set of statistics over
that data, and manipulating the data plane without impacting normal traffic. To sustain typical
network volatility, this process should be able to operate on a sub-RTT granularity.

2. To package the above capability into a reaction abstraction that hides the many complexities
of implementing reactive behavior, e.g., ensuring that the data plane is malleable, coordinating
data-control plane communication at runtime, and reasoning about asynchronous behavior.

Explicitly not a goal of our system is support for arbitrary changes to the data plane at runtime.
For that, we refer interested readers to prior work that has successfully emulated P4 using match-
action tables [80], albeit at a high cost (for an L2 switch, a 6.5× increase in match stages and 83%
bandwidth penalty). Instead, we assume that the general structure of the data plane is known a
priori and that reactions only need to touch a subset of data plane objects.

We demonstrate, usingMantis, that the above approach is sufficient to implement a range of network
architectures that are difficult and/or costly to implement in today’s RMT switches. We discuss and
evaluate these applications, listed in Table 3.1, in §3.8.

Core abstractions. Two abstractions underlie our work:

MALLEABLE ENTITIES— InMantis, specific primitives in the data plane program can be tagged as ‘mal-
leable,’ indicating that they should be amenable to fine-grained modification at runtime. Malleable
values, used in the expressions of data-plane actions, can take on any constant value; malleable
fields act as dynamic references to a predefined set of existing header and metadata fields; and mal-
leable tables function exactly like normal match-action tables, but with the ability to be modified at
a fine-granularity.
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� �
<p4_declaration> ::= <mbl_declaration> | <reaction_declaration> | ...
% (malleable entities)
<mbl_declaration> ::= ‘malleable’ <table_declaration>

| ‘malleable’ <mbl_val_declaration>
| ‘malleable’ <mbl_fld_declaration>

<mbl_val_declaration> ::= ‘value’ <mbl_name> ‘{’
<width_declaration> ‘;’
‘init :’ | <const_value> ‘;’ ‘}’

<mbl_fld_declaration> ::= ‘field’ <mbl_name> ‘{’
<width_declaration> ‘;’
‘init :’ <field_ref> ‘;’
‘alts {’ <field_ref> [‘,’ <field_ref> ]* ‘}’ ‘;’ ‘}’

% (reactions)
<reaction_declaration> ::= ‘reaction’ <reaction_name>

‘(’ [ <reaction_args> [, <reaction_args>]* ] ‘)’
‘{ // C-like code }’

<reaction_args> ::= ‘ing’ <reaction_arg>
| ‘egr’ <reaction_arg>
| ‘reg’ <register_ref> ‘[’ <const_value> ‘:’ <const_value> ‘]’

<reaction_arg> ::= ‘${’ <mbl_read_ref> ‘}’
| <field_ref>
| <header_ref>
| <field_value>

% (references)
<field_or_masked_ref> ::= ‘${’ <mbl_read_ref> ‘}’

| ‘${’ <mbl_read_ref> ‘}’ ‘mask’ | <const_value>
| ...

<arg> ::= ‘${’ <mbl_read_ref> ‘}’ | ...
<exp> ::= ‘${’ <mbl_read_ref> ‘}’ | ...� �
Figure 3.3: The P4R extensions to the P4-14 v1.0.5 grammar. Gray non-terminal nodes refer to
legacy rules in [9], and nodes ending in _name indicate strings whose first character is a letter.
mbl_read_refs can access both malleable values and fields. Note that all writes in P4-14 are done
via primitive actions, which we omit for similar reasons to [9].

REACTIONS — Measuring the network and modifying malleable portions of the data plane are ‘re-
actions’—small C functions that are compiled and dynamically loaded into a custom, reaction-centric
control plane running on each switch’s local CPU. In Mantis, the control plane will, as quickly as
possible, poll the parameters of each reaction function and react to the measurements by updating
malleable entities according to these user-defined functions.

System architecture. On top of the above abstractions, Mantis combines a language, a compiler,
and a control plane architecture, all designed to enable fast, simple, and safe control loops for
programmable switches. Figure 3.2 depicts the architecture of Mantis.

• The P4R language: Actualizing our two core abstractions is a simple extension to P4—one where
certain fields, values, and tables can be tagged as ‘malleable.’
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• The Mantis compiler: The compiler transforms P4R programs into a pair of artifacts: (1) a valid
P4 program that reformulates the P4R to ensure that metrics are exported and that malleables
are runtime-configurable and (2) a reaction function implementation that interfaces with the
generated P4 program.

• The Mantis control plane: An optimized control plane agent running on the switch CPU is respon-
sible for the rapid, serializable coordination of measurement and updates.

Paper roadmap. We start in §3.4 by describing the P4R language and how Mantis translates from
P4R to P4without any isolation guarantees. §3.5 then introducesMantis’s approach for guaranteeing
per-pipeline serializable isolation of reads, writes, and packet processing. Finally, §3.6 presents the
Mantis control plane before delving into the implementation/evaluation.

3.4. Language and Transformations

Adhering to best practices in language design [104], P4R reuses the basic syntax and semantics
of the P4 programming language. It then allows users to tag various P4 objects as ‘malleable’ and
define the reaction functions that modify those objects. We already saw an example of both language
features in Figure 3.1.

Grammar. Briefly, malleable fields and values are declared with a width, an initial value, and in the
case of a malleable field, a set of potential aliases to which the entity can reference. Malleable tables
are declared with an annotation to indicate that the compiler should prepare for its use in a reaction
loop. Otherwise, all three can be used in the same way as their traditional P4 counterparts.

The precise extensions wemake to the P4-14 grammar are shown in Figure 3.3. The grammar follows
the naming conventions of [9]. Note that, like [9], we omit our changes to primitive actions such as
modify_field and add_to_field, whose existence is platform dependent. In general, however, any
field or value parameter to these primitive actions may be replaced with a reference to a malleable

(mbl_read_ref or mbl_write_ref, depending on the semantics).

Reaction functions. Of note are reaction functions like the one in Figure 3.1 that allow users to
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embed C code that specifies the control plane behavior that accompanies the data plane implemen-
tation.

Syntactically, reactions mirror C, but with a couple of changes. The first is the parameters to a
reaction, which are a set of fields, registers, or malleable fields/values from the data plane. Before
executing the body of the reaction, Mantis polls the current value of all of these parameters. Note that
if there are multiple line cards with distinct register state, a separate instance of the Mantis agent
will run for each. The second is the use of malleables within the function body. For malleable
fields and values, these can be referenced with the same ${var} notation used in the rest of the
P4R program—the compiler will replace them with generated functions that write to the data plane
or read the last written value, depending on the context. For malleable tables, users can interact
directly via a set of automatically generated library functions, e.g., table_var.addEntry(...).

Semantically, all registered reaction functions are executed sequentially, in a loop. Mantis does not
guarantee a specific ordering but does guarantee serializability between parameter polling, updates
to malleable entities, and packets’ processing (see §3.5).

3.4.1. Producing Malleable P4

Supporting fast and safe reactions is Mantis’s compiler, which transforms P4R into a valid P4 pro-
gram, but one in which malleable entities can be rapidly updated at runtime. In this section, we
describe through several examples the necessary transformations for malleable fields and values
without considering isolation guarantees. Note that we do not describe one-off writes of malleable
tables as (ignoring isolation) they are already modifiable in today’s switches.

Values. Figure 3.4 shows a simple example of a definition and use of a malleable value, value_var.
The original P4R code can be found in the four non-bolded lines, which contain the entity definition
and its use within the P4 add primitive.

The Mantis compiler transforms the code as follows. It instantiates the value in a metadata header
(p4r_meta_) and generates an associated table (p4r_init_) with a single possible action. This table
is applied at the beginning of each packet processing pipeline, and it is what allows Mantis to assign
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� �
- malleable value value_var { width : 16; init : 1; }
+ header_type p4r_meta_t_ {
+ fields { value_var : 16; }
+ }
+ metadata p4r_meta_t_ p4r_meta_ { value_var : 1; };

// Applied once at the beginning of the pipeline
+ table p4r_init_ {
+ actions { p4r_init_action_; }
+ size : 1;
+ }
+ action p4r_init_action_(value_var) {
+ modify_field(p4r_meta_.value_var, value_var);
+ }

action my_action() {
± add(hdr.foo, hdr.bar, ${value_var} p4r_meta_.value_var);

}� �
Figure 3.4: Mantis’s transformation of a malleable value. Strikethroughs and ‘-’ annotations in-
dicate P4R code that is removed by the transformation; boldbold text and ‘+’ annotations indicate P4
code that is generated by Mantis.

different values to the malleable at runtime by updating just a single table entry. As we will see
later, this initialization table serves many purposes, configuring malleables and version control bits
for the entire pipeline.

Fields (write). P4R also includes malleable fields, which act as references to a predefined set of
existing P4 fields; users can dynamically ‘shift’ the target of the reference to any member of the set,
e.g., to change the matched field of a table. As references, malleable fields are L-values, meaning that
they can appear on either the left- or right-hand side of an assignment operator in the data plane
program. We focus first on ‘left-hand’ usages. Figure 3.5 shows an example. Specifically, it shows a
scenario where the programmer seeks to store the value of baz into either hdr.foo or hdr.bar.

A naïve implementation of this functionality would be to replace the malleable with a generated
metadata field and, after every use of it, add a match-action table whose sole purpose is to copy the
current value of the generated field back into the referenced field. The inserted table would have
a distinct action for every possible ‘alt,’ and users would modify the default action when changing
the target of the reference. Unfortunately, there are several issues with this strawman. First, it
adds additional tables and potentially stages to the data plane program. Second, it violates the
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� �
- malleable field write_var {
- .width : 32; init : hdr.foo;
- .alts { hdr.foo, hdr.bar }
- }
+ header_type p4r_meta_t_ {
+ fields { write_var_alt : 1; }
+ }
+ metadata p4r_meta_t_ p4r_meta_;

// Action applied once (with value loads)
+ action p4r_init_action_(write_var_alt) {
+ modify_field(p4r_meta_.write_var_alt, write_var_alt);
+ }

// For every use of the malleable field
table my_table {

reads { hdr.qux : exact;
± p4r_meta_.write_var_alt : exact; }
± actions { my_action_hdr_foo_;
± my_action_hdr_bar_; }

}
± action my_action_hdr_foo_(baz) {
± modify_field(${write_var} hdr.foo, baz);

}
+ action my_action_hdr_bar_(baz) {
+ modify_field(hdr.bar, baz);
+ }� �
Figure 3.5: Transformation for malleable fields that we wish to use on the ‘left-hand side’ of assign-
ments.

atomicity of reference shifts as a concurrent shift might cause the reference to act as hdr.foo or
hdr.bar in different actions applied to the same packet. Even without concurrent shifts, uses of both
the malleable and the field to which it references in the same action can be problematic.

To address the above challenges, Mantis performs two tasks. The first is to declare and load, at the
beginning of the pipeline and for every relevantmalleable field, ametadata field (e.g., write_var_alt)
with width ⌈log2|alts|⌉ that determines, at runtime, the alternative that it references. The second is
to transform every table that assigns the malleable field to also match on write_var_alt.

This extra match field allows the data plane to call specialized action functions that are instantiated
for each possible configuration of the malleable fields. While this strategy increases the number of
entries in affected tables to: ∑

(m,a)∈Entries

( ∏
v∈mbls(a)

|valts|
)

(3.1)
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� �
- malleable field read_var {
- .width : 32; init : hdr.foo;
- .alts { hdr.foo, hdr.bar }
-.}
+ header_type p4r_meta_t_ {
+ fields { read_var_alt : 1; }
+ }
+ metadata p4r_meta_t_ p4r_meta_;

// Action applied once (with value loads)
+ action p4r_init_action_(read_var_alt) {
+ modify_field(p4r_meta_.read_var_alt, read_var_alt);
+ }

// For every use of the malleable field
table my_table {

± reads { ${read_var} : exact;
+ hdr.foo : ternary; hdr.bar : ternary;
± p4r_meta_.read_var_alt : exact; }
± actions { my_action_hdr_foo_;
± my_action_hdr_bar_; }

}
± action my_action_hdr_foo_() {
± add(hdr.qux, hdr.baz, ${read_var} hdr.foo);

}
+ action my_action_hdr_bar_() {
+ add(hdr.qux, hdr.baz, hdr.bar);
+ }� �
Figure 3.6: Transformation for malleable fields that we wish to use on the ‘right-hand side’ of as-
signments. This example combines uses inside an action and a table match field.

it avoids the table/stage costs of the strawman (often the bottleneck in programmable switches) and
the atomicity issues. We anticipate that the number of affected actions, the number of malleable
fields per action, and the number of alternatives per malleable field will all be relatively small in
most cases.

Fields (read). Malleable fields can also be used on the right-hand side of assignments almost any-
where a field can be referenced in P4, e.g., inside an action, as a table match field, or in a field_list.
Figure 3.6 shows a couple of examples.

Inside an action, we can apply the previous method of loading the selector field at the beginning of
the pipeline and specializing actions. Slightly more complex is the use of malleable fields in table
matches. Here, the compiler, in addition to matching on read_var_alt, replaces the malleable

match field with |alts| instantiated match fields. For example, when the user adds an entry for
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${read_var} = 0, Mantis inserts two entries into my_table:

• (foo=0, bar=*, read_var_alt=0)

• (foo=*, bar=0, read_var_alt=1)

Note that this means exact matches on a malleable field need to become ternary to accommodate
the wildcard; ternary and lpm matches can remain. Also note that using a malleable in a table
match, on its own, does not necessitate action specialization—specialization is only necessary if it
is used within the given action.

Compound usages. While the above examples all include only a single malleable entity, Mantis
allows the use of multiple entities in the same program and the same tables/actions.

One place where multiple malleables would interact is the initialization at the beginning of the
pipeline. Tominimize the number of necessary tables and actions, we can reuse a single init_action

for multiple malleables (field or value) by passing in multiple parameters and including multiple
assignments in the action body. If the number or aggregate size of the parameters exceeds the limits
of a single action, Mantis will create multiple init tables. In this case, minimizing the number of
tables involves a bin packing problem. Mantis solves this with a simple greedy algorithm in which
it sorts the parameters in order of decreasing size and finds the ‘first fit’.

The other place where they might interact is in the tables and actions of the P4 program. For mal-
leable values, their composition is trivial as any instance can be directly replaced with the designated
metadata field regardless of context. For malleable fields, multiple uses of the same field—whether
left-hand or right—can be coalesced; each action needs to be specialized at most one time. For
uses of different fields, transformations are applied recursively. For example, two malleable fields
used in the same action will require two stages of action specialization that will result in an enu-
meration of all possible permutation of alternatives. Note an optimization when the fields are read,
but not written—loading values in prior stages may result in lower overhead than instantiating all
permutations.
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Figure 3.7: Ensuring sequentially consistency for table entry adds using three-phase updates. Mul-
tiple entries across multiple tables can be modified in step 1 before they are atomically committed
in step 2 . The rule is mirrored in step 3 to assist with fast subsequent updates.

3.4.2. Gathering Measurements

In addition to ensuring that portions of the data plane can be rapidly updated, Mantis also ensures
that reaction function parameters can be rapidly read. While P4 provides many ways to read in-
formation from the data plane (e.g., digests, counters, the copy_to_cpu flag, etc.), to ensure fast
reaction time, the chosen mechanisms need to have the following properties:

R1 Measurement should not be on a per-packet basis. While we seek fast reaction time, switch
CPUs are not equipped and should not be expected to handle line-rate processing.

R2 The measurement schedule should be flexible. While reactions should be as close to real-time
as possible, concurrent management tasks and varying reaction execution time mean that the
Mantis should tolerate fluctuating measurement intervals.

R3 Measurements should return the most recent data. For instance, the regular export of digests
from the data plane would be undesirable as the most recent digests might be head-of-line
blocked behind previously unprocessed digests.

Mantis presents an abstraction where the data plane updates measurements on every packet, but
the control plane only polls those measurements when it is ready to process the next iteration of the
reaction loop. Mantis implements this protocol via stateful registers that can be updated in the data
plane and polled from the control plane; Mantis stores the polled values in a C variable/array for
use in the user-defined reactions. Note that, this pull-based model will only see a subset of updates,
thus, users should ensure that any necessary information is retained across packets.
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Figure 3.8: Ensuring sequentially consistency for table entry updates using three-phase updates.
As in Figure 3.7, multiple entries and tables can be modified in step 1 . Unaffected entries remain
untouched.

Compiler transformations. Header/metadata reaction parameters are collected from every passing
packet into generated registers at the end of the pipeline specified by their ing/egr annotation; the
Mantis compiler places the register after the last modification to the field. User-defined register
parameters can be read from the control plane directly, modulo the transformations described in
§3.5.2.

Similar to the generation of the init action, Mantis packs header and metadata reaction parameters
into as few registers as possible using the sorted-first-fit algorithm discussed previously. The only
difference is that parameters from different reactions may be considered separately when packing.
Although this may consume more resources than otherwise, it allows Mantis to poll only the most
relevant parameters immediately before executing the reaction, which improves the freshness of the
measured data.

3.5. Enforcing Isolation8

A critical piece of the reaction abstraction is isolation between measurement, modifications, and
packet processing. To see why this is important, consider a reaction function that takes as arguments
the 5-tuple from a packet. While a user might reasonably expect that the parameters passed into
her reaction function all came from a single packet, without isolation, this is unlikely unless no new
packets arrive between the first and last measurement.

To address this challenge, Mantis provides per-pipeline, per-reaction serializable isolation between

measurements, malleable entity updates, and packet processing. Said differently, from the perspective
8‘Isolation’ here refers to same type of isolation used in ACID [201].
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of a single packet processing pipeline, the three types of operations—gathering of measurements,
application of a reaction, and processing of packets—all appear to execute in some sequential order,
despite the inherent parallelism of packet processing.

This particular level of isolation is deliberate as it is both practical and efficient to implement.
Stronger guarantees like grouping measurement and updates into a single transaction are useful
but difficult to implement in today’s switches. Similarly, cross-pipeline guarantees, while potentially
useful, would require some type of in-band coordination between all pipelines [187]. We leave an
exploration of these stronger models for future work.

3.5.1. Serializable Isolation of Updates

We begin with how Mantis guarantees serializability of reactions’ effects before discussing measure-
ment collection in §3.5.2.

3.5.1.1 Updates to fields and values

For malleable fields and values, the generated P4 of §3.4.1 is specifically crafted to be atomically
modifiable. In particular, for both types of entities, their value is determined at the beginning of
each pipeline, in the p4r_init_ table. As RMT switches typically guarantee the consistency of a
single table entry modification, so long as we can pack all configuration of malleable entities into
a single p4r_init_action_ (see §3.4.1), we can leverage the action as a serialization point. As a
concrete example, consider a P4R program with two malleables (value_var and field_var):

action p4r_init_action_(value_var, field_var_alt) {

modify_field(p4r_meta_.value_var, value_var);

modify_field(p4r_meta_.field_var_alt, field_var_alt);

}

A single table entry update can change both atomically. New packets that enter the pipeline will use
the updated assignments, while packets that have already passed this stage will continue to use the
previous set of assignments.

The above strategy works until the P4R metadata used in a single pipeline of the P4R program

62



exceeds the allowed size of the action (a platform-dependent value). As mentioned in §3.4.1, this
case forces the compiler to split the p4r_init_ table into several, e.g., p4r_init1_, p4r_init2_, etc.
Updates to these tables can be made serializable by treating all except the first as normal, malleable
tables and using the method described in the subsequent section.

3.5.1.2 Updates to tables

Handling malleable table modifications is slightly more complex. Conceptually, Mantis’s approach
is similar to that of [153, 154], but with a few critical differences that stem from Mantis’s goal of
extremely fast and repeated updates.

More specifically, in [154], Reitblatt et al. guarantee consistent updates in SDN deployments using
a two-phase protocol. The protocol assumes that every packet is tagged with the current version
number, i. Thus, to install a new configuration, the first step is to add the complete set of new rules
across the internal nodes of the network such that the new rules only match on packets with version
i + 1. The second step is then to, one-by-one, update all ingress nodes to tag packets entering the
network with version i + 1. After a conservative timeout, the older configuration set is eventually
removed from the internal nodes.

There are at least a couple of issues with applying the above protocol directly to Mantis’s reaction
loop. The first relates to the handling of frequent updates: given how often Mantis can update
tables, conservative timeouts and the need to keep around multiple ‘in-flight’ updates can easily
lead to order-of-magnitude increases in necessary table space. The second relates to reaction time:
every update in [154] requires an insertion for every table entry in the new configuration, regardless
of whether it was changed from the previous version or not.9 Removal of stale versions doubles the
latency overhead when the throughput of the control plane is the bottleneck.

Mantis, in contrast, guarantees serializability of groups of arbitrary and repeated table updates,
where the required time is proportional to the number of P4R table interactions and the space
overhead is bounded. Mantis’s approach relies on a 1-bit version control flag, vv, that is set in the

9While [154] mentions possible optimizations that only apply the delta between old and new configurations, it does
not discuss how to handle more than one such update.
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init_action alongside the malleable fields/values; vv is also added as an exact-match field to every
malleable table. With the vv field, every entry in every malleable table is doubled: one copy with
vv = 0 and the other with vv = 1. Active entries can be flipped atomically by updating the vv bit.

Note that a 1-bit version flag is sufficient in Mantis as Mantis loads malleable entity configurations
and the version control bit at the beginning of each pipeline and deliberately does not guarantee
cross-pipeline isolation (e.g., between ingress and egress or across recirculations). Thus, old versions
only persist for the maximum latency of a pipeline, which is typically measured in the 100s of
nanoseconds. PCIe latency from the control plane is an order of magnitude higher, so the maximum
number of active versions is two, regardless of the complexity of the reaction’s effects.

Adding a new entry to the table at runtime employs a three-step update, as shown in Figure 3.7.
Assume, w.l.o.g., that vv begins at 1. In this configuration, the entries with vv = 1 serve as the
primary copy, while the entries with vv = 0 serve as a shadow copy.

1. The Mantis control plane first prepares the entries it wishes to add by adding them to the table,
but with the requirement that vv = 0. Any number of entries and tables can be modified in this
step; meanwhile, all packets will continue to use the vv = 1 and the default action.

2. In the second step, Mantis then commits all of the added entries by atomically flipping the
version control bit, vv = vv⊕1 by updating the p4r_init_ table. Note that any inflight packets
that have already passed the init stage will continue to use the vv = 1 copy even after the
commit.

3. Finally, so that the entry can withstand a subsequent flip back to vv = 1, Mantismirrors updates
to the shadow copy. While this step has no visible effect on the network, it amortizes the cost
of maintaining the shadow to keep latency more predictable.

Updating an existing table entry proceeds as in Figure 3.8. As mentioned above, init tables beyond
the first are handled using the same mechanism. p4r_init1_ (the first table) is considered the
‘master’ and contains the version control bit; all other init tables will contain two entries (one for
each version) just like a malleable table. Thus, when dealing with multiple init tables, the master
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Figure 3.9: Ensuring measurement isolation for measured data plane fields. For mv = 1, index 1 is
the working copy and index 0 is the checkpoint copy. For mv = 0, vice versa.

is always updated last. Deleting an entry looks similar to adding a table entry, but in reverse: the
shadow copy is deleted in the prepare step and the original primary is deleted after the commit. All
three types of operations—add, update, and remove—can share a prepare and commit step, even
if they touch the same tables and entries. A proof of serializability of this process follows from that
of [154].

3.5.2. Serializable Isolation of Measurements

Mantis also guarantees that the polling of the registers that store reaction parameters reflects a
serial execution with respect to packet processing. As mentioned, a naïve implementation of register
polling would result in an inconsistent view of reaction arguments.

Fields. Mantis ensures that the data plane will not overwrite the registers that store reaction-
parameter fields (see §3.4.2) by using a register array rather than an individual register. These
arrays have two entries each: a ‘working’ copy and a ‘checkpoint’ copy, both gated on a 1-bit mv bit
that is set in the p4r_init_ action of each pipeline along with vv. We configure the data plane such
that it only writes to the working copy.

Figure 3.9 demonstrates an example usage of this mechanism. When the control plane wishes to
measure a group of generated field-storing registers, it first 1 flips the measurement version bit.
Assuming that the flip was from 0→ 1, index 0 of both registers are now the checkpoint copies and
should not be touched by the data plane. Mantis can, therefore, take as much time as it needs to 2

read those values; meanwhile, the data plane will continue to update the working-copy entries.

Registers and register arrays. Mantis can also collect values contained in stateful elements, e.g.,
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registers, using a ‘double-buffering’ scheme. Specifically, it creates a duplicate version of the register
with twice as many instances. In every action that writes to the original user-defined register, Mantis
saves the written value (and in the case of a register array, the accessed index) to metadata fields
and mirrors the fields to the duplicated register. The written index is the original index prepended
by the mv bit.

A complicating factor in register measurement (and the reason why we need a duplicate rather than
reusing the original) is that not every register will be updated on every packet. In fact, in the case
of a register array, at most a single index will be updated per packet. Because of this, the control
plane may observe stale values. For example, consider a case where a register R contains the value
ri in both mv = 0 and mv = 1, and R gets updated to ri+1 in the working copy, mv = 1. If the control
plane flips mv twice before another update of R, then it will observe ri+1 followed by a stale reading
of ri. Until a new update of R, the measured value will alternate between ri and ri+1.

The above effect necessitates an additional mechanism. Mantis adds to every duplicated register a
‘timestamp’ register whose entries are incremented every time the associated register’s entries are
updated. This allows the Mantis control plane to identify which entries have changed since the copy
was last read. The control plane keeps a cache of these values; entries are only replaced when the
associated timestamp is updated, ensuring that it holds only the most up-to-date contents of every
register entry.

We note a potential optimization when the stateful element is never read within the data plane—a
common pattern with switch counters and other statistics. In this case, the original register is not
necessary and can be eliminated.

3.6. The Mantis Control Plane

TheMantis control plane runs on a switch’s onboard CPUs and uses the measurements andmalleable
code described in the previous sections to interact with the switching ASIC. Modern data center
switches already use this CPU for tasks such as routing, monitoring, and configuration; however,
these interactions are traditionally assumed to be one-off and asynchronous, i.e., ‘on the slow path.’
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We pursue a different goal: to, as quickly as possible, poll data plane registers and react to them in
a user-defined fashion. Rather than treating each interaction between the data and control plane
as an isolated event, Mantis presents an alternative architecture—one where the control plane exe-
cutes one of a set of predetermined actions repeatedly, and without pause. With a highly optimized
control-plane agent and driver, Mantis can execute iterations of the control plane loop at granular-
ities that are on the same order of magnitude as the PCIe latency of the underlying system, and an
order of magnitude lower than a typical data center RTT.

Control plane architecture. The operation of the Mantis control plane is split into two phases:

1. Prologue: The prologue phase encompasses the initialization of malleable values/fields, popu-
lating initial table entries, setting upmemoization, and configuring driver sessions of the switch.

2. Dialogue: The dialogue phase is where the control plane—as rapidly as possible—polls mea-
surement registers and executes user-defined reactions based on the collected measurement.

Mantis is explicitly optimized for repeated accesses and updates to the same set of reaction param-
eters and malleables; this includes several custom driver modifications that support repeat interac-
tions. Mantis optimizations include precomputation of metadata during the prologue; batching of
requests during the dialogue; and caching/memoization of device instructions in the prologue (for
statically computable driver operations) as well as the dialogue (for repeated table modifications).
The latter is particularly important for speeding up mv updates, etc. Thus, control flow is as follows:

// prologue

helper_state = precompute_metadata();

memo = setup_cache(helper_state);

run_user_initialization(helper_state, memo);

// dialogue

while(!stopped) {

updateTable(memo, "p4r_init_", {measure_ver : mv ^ 1});

read_measurements(memo, mv); mv ^= 1;

run_user_reaction(memo, helper_state, vv ^ 1);
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updateTable(memo, "p4r_init_", {config_ver : vv ^ 1});

fill_shadow_tables(memo, vv); vv ^= 1;

}

The dialogue loop is single-threaded to avoid driver contention and consistency issues; however,
if the switch contains multiple disjoint linecards or pipelines, these can be handled by spawning
multiple Mantis agent threads, each handling its own component. To minimize latency, Mantis runs
as a busy loop in a reserved CPU core, with the option to trade latency for lower CPU utilization.

Stateful dialogue. We note that Mantis allows users to retain state across iterations of the dialogue
loop. Examples of behavior that may require this functionality include computing average through-
put, tracking buffer depth gradients, or using the reaction loop to sample statistics over time. Mantis
supports this behavior intrinsically through C static variables, which, when used inside a function,
allocate space in the DATA segment of the program’s memory and retain their value across function
invocations.

Legacy control plane accesses. We also note that Mantis does not preclude legacy control plane ac-
cesses, e.g., for routing protocols, handling of higher-level protocols, and manual network operator
interaction. Concurrent use is fine as the underlying drivers are typically designed to be thread-safe.
Further, due to the poll-based and single-threaded nature of the Mantis agent, at most one reaction
is active at any time. Thus, the CPU-ASIC interactions of a legacy application will only need to queue
behind at most one set of operations from Mantis. We evaluate this effect in §3.8.2.

3.7. Implementation

We implemented a prototype of Mantis, including a P4R compiler, control plane agent, and modified
driver infrastructure. Our prototype runs on a Wedge100BF-32X.

Compiler. The Mantis compiler translates .p4r files into a P4 program and C library. In total, the
compiler implementation consists of 4,000 lines of C++ and around 1,250 lines of grammar. The
compiler’s parsing frontend is implemented with Flex/Bison. While parsing, the compiler builds an
AST of the input program and, over several translation passes, adds/updates nodes to implement
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the transformations in §3.4 and §3.5. While parsing the P4R program, the compiler also extracts
reaction function definitions. With the help of the P4 compiler, the compiler translates the arguments
and malleable entity modifications into executable code that properly handles argument mirroring
and isolation.

Dynamic loading. The C reaction function is compiled into a shared object with gcc so that, at
runtime, Mantis can load the user reaction loops via shared objects and dynamic loading. Not only
does this separate the implementation of the control plane from that of user code, it also potentially
enables users to change their reaction functions without interrupting switch operations.

To signal a change, a user-defined signal will activate a transition flag in the running agent. The
flag will break out of the reaction loop after any current dialogue completes, unload the previous
dialogue module, and link the new shared object. Users can specify whether the prologue user
initialization should be re-executed.

Control plane. Our prototype control plane dynamically unloads/reloads .so files that implement
the reaction prologues and dialogues, before executing the high-frequency measurement and reac-
tion loop described in §3.6. To ensure fast reaction time, we reserve a core for the reaction loop,
configure the loop thread with high priority, and set a SCHED_FIFO real-time scheduling policy. As
mentioned in §3.6, these can be scaled back in return for increased reaction time. We also modify
the existing drivers and control plane interfaces in order to optimize latency.
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Malleables LoC Control Flow Memory

Example Reaction val fld tbl P4R P4 Stgs Tbls Regs SRAM TCAM Metadata

Flow size estimation
and DoS mitigation

Reads packet headers from the data plane to derive an
estimate of the data sent by all senders in the network.
Blocks senders that exceed a threshold rate.

81 95 2 2 1 48KB 1.28KB 263b

Route
recomputation

Detects failures using a gray failure detector—marking
the link as down if received heartbeats dip below δ =
⌊η Td

Ts
⌋ for consecutive loops. Routes are recomputed on

detection.

30 158 1 6 6 192KB 0KB 160b

Hash polarization
mitigation

Reads queue depth of a set of load-balanced ECMP ports.
If there is persistent imbalance, changes the ECMP hash-
ing strategy to prevent polarization.

157 245 3 8 1 160KB 0KB 498b

Reinforcement
Learning

Reads packet counts and queue depths for different
ports to compute a reward function. Uses RL techniques
to optimize DCTCP marking threshold reconfiguration
policy.

132 239 2 13 6 192KB 0KB 380b

Table 3.1: Examples of network features that can be formulated as reactions. Evaluation metrics are measured in terms of marginal
increase over a basic router. See §3.8 for a more detailed evaluation of these examples.
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Figure 3.10: Latency of raw measurements/updates in Mantis. These numbers do not include iso-
lation mechanisms.

3.8. Evaluation

We evaluated Mantis using our prototype implementation. All experiments were run on a hardware
testbed consisting of a Wedge100BF-32X switch connected to a set of servers via 25Gbps links.

3.8.1. Mantis Achieves Fast Reaction Times

Tomeasure the reaction time of Mantis, wemicrobenchmark raw operations (before themechanisms
of §3.5) in Mantis, from which we can construct a cost model. The microbenchmarks show the
latency of reading reaction arguments and writing to malleables.

Figure 3.10a plots the latency of measuring the data plane versus the total size of the state that
is read. We show results for both 32-bit field arguments and 32-bit register arguments. For field
arguments (ingress or egress), the latency of measurement is dependent on the number of packed
32-bit registers that the control plane must read. This value increases linearly modulo packing
efficiency. For register arguments, our kernel driver optimizations ensure that reads of multiple
entries of a single register array are cheap, each additional byte incurring only 10s of ns of latency.
We do not show results for reading from multiple register arrays as the results are identical to field
arguments (as field arguments are implemented as registers).

Figure 3.10b shows results for updates of the data plane. Here, we plot latency versus the number
of updates. For scalar malleables (fields and values), the latency of updates is constant as long as
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Figure 3.12: Latency of a concurrent legacy
table update with and without Mantis.

all of the accesses can be handled within a single p4r_init_ table (very large in today’s switches).
After that point, we would need to include the latency of the update protocol. For malleable tables,
latency increases linearly with the number of entries modified. Note that, for table insertions, the
latency may be more complex [52]; however, we anticipate that most reactions will be updates or
involve smaller tables.

The total latency of a reaction function is, thus, approximately:

F3.10b(1 tblMod) +
∑

a∈args

(
F3.10a(a)

)
+ C

+
∑

t∈tblMods

(
2F3.10b(t)

)
+ 2F3.10b(Ninit − 1) + F3.10b(1 tblMod)

where F3.10a and F3.10b are functions that correspond to Figures 3.10a and 3.10b, respectively; C

is the execution time of the reaction logic; and Ninit is the number of init tables in the generated
program. The first half of the equation corresponds to the latency of serializable measurement and
the reaction logic. The second half corresponds to the latency of serializable updates. For all of the
use cases in Table 3.1, end-to-end reaction time was on the order of 10s of µs.

3.8.2. Mantis Can Co-exist with Other Functions

We next explore Mantis’s overhead in switch and CPU resources.
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Figure 3.13: Malleable field TCAM usage.

CPU. By default, the Mantis control plane agent occupies one dedicated core for its dialogue loop;
however, as mentioned in §3.6, it is possible to reduce this utilization at the cost of slower reaction
times. Figure 3.11 shows this tradeoff for the update of a single malleable field with nanosleep for
pacing. Reducing utilization to 20% still keeps the average reaction time to 10s of µs.

We also evaluate the impact of Mantis’s fast reaction loop on concurrent, legacy switch operations.
Specifically, we configure a parallel control plane (running on a different core of the switch CPU)
that submits a continuous stream of table entry updates to the switch. We note that this is likely
more aggressive thanmost legacy control planes. Mantis does slow down its neighbor, but the impact
is relatively small; it mostly comes when the neighbor’s update is blocked behind Mantis’s current
operation, creating a bimodal distribution. Even so, the median and p99 latency of legacy switch
operations in the presence of Mantis versus without it are within 4.64% and 6.45%, respectively.

Memory. The other primary overhead of Mantis is switch memory, which is used for init tables,
measurement registers, malleable table shadow entries, and transformations for malleable fields.
The effect of the first three sources are simple to reason about: init tables add a small number of
tables with 1–2 entries each, measurement registers are proportional to the number of arguments,
and shadow table entries double the memory required for each malleable table.

The memory cost for malleable field transformations is slightly more complex. To evaluate it, we
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consider a K-bit malleable field ${X} with A possible alternatives. We use a table tiWriteX that
matches on the 5-tuple (all ternary matches) and writes to ${X} in an action, similar to Figure 3.5.
We also use a table tiReadX that uses X in an action and as a field match, similar to Figure 3.6 but
matching on the 5-tuple plus X.

Figure 3.13 shows both tables’ TCAM usage (the main bottleneck in this scenario). We evaluate two
table occupancies, 512 and 1024. These are the number of user-defined entries, not the number of
actual entries, which will be higher to account for the instantiated actions. As shown in Figure 3.13a,
for a given field width, TCAM usage scales linearly with A in tiWriteX. For tiReadX, usage is
asymptotically quadratic because the compiler needs to instantiate actions and add A extra ternary
match columns. Varying the field width, we obtain Figure 3.13b, which shows that for tiReadX,
usage is proportional to K and tiWriteX size is constant with respect to K as, when A is fixed, the
number of action instantiations is fixed.

3.9. Mantis, in Context

We also evaluate Mantis in the context of the use cases of Table 3.1. We emphasize that these
examples are not complete solutions, nor do they preclude the existence of a future workaround.
Rather, they are intended as instruments through which we can understand the utility of Mantis, its
relationship to existing data/control-plane alternatives, and the range of what it can express.

3.9.1. Flow Size Estimation and DoS Mitigation

The first use case we examine includes a classic problem in computer networks: flow size estimation.
Flow sizes are useful for a variety of tasks, including Heavy Hitters, DDoS victim detection, etc [131].
Unfortunately, given the scale of today’s networks, obtaining a precise account of the network’s flow
sizes is not always feasible. Instead, most modern approaches rely on approximation.

Two solutions are prototypical for this problem. The first is sFlow and its variants [151] where the
control plane constructs approximate flow statistics from sampled packets. The second is sketch-
based approaches [169] where the data plane records, in a compact representation, statistics over
flows. With representatives in both a traditional control plane utility and programmable data plane
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Figure 3.14: Average estimation error for Mantis and several alternatives. Mantis outperforms sFlow
by orders of magnitude, and when equalizing the number of stages, beats data plane implementa-
tions for small flows as well.

algorithm, this use case is an ideal proving ground for Mantis.

As a reaction, we use a similar setup to Poseidon [202], which among other things, proposed dy-
namic reinstallation of data plane programs to respond to DDoS attacks. For simplicity, we model
their per-sender statistics and rate-limiting defense, but the same techniques would apply to 5-tuples
and more complex defenses.

Algorithm. We configure the data plane to track the current packet’s source IP and a counter of
the total number of bytes received. The reaction takes these two values as parameters and keeps a
hash table of all sources. On every iteration, it attributes the marginal increase in total byte count
from the previous dialogue to the given source IP. The reaction then computes the rate using f̂t−f̂t0

t−t0
,

where f̂t is the counter at time t and t0 is the time immediately prior to the first observation of
the flow. To prevent spurious detection of new flows, we impose a minimum duration before a flow
becomes eligible for blocking. For our experiments, we set a simple 1Gbps threshold, but reiterate
that arbitrary C is allowed.

Results. To evaluate the accuracy of size estimation in Mantis, we use tcpreplaywith a CAIDA [10]
ISP-backbone trace. For this experiment, Mantis was able to sustain a sampling rate of ∼10µs,
corresponding to an average of ∼1 in 5 packets.
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Figure 3.15: Aggregate throughput for legitimate flows from S{1,2,...,250} sending to D. When S0
begins to flood the network, Mantis detects and suppresses it orders of magnitude faster than similar
systems (cf. Figure 14 of [202]).

Figure 3.14 shows the average estimation error of Mantis versus the sFlow-based estimator and a
pair of data plane implementations. For sFlow, we use the 1:30,000 sampling frequency suggested
in [155]. For the data plane implementations, we include a hash table as well as a 2-stage count-min
sketch. Following the configuration guidance of [169], we chunk the trace into 20 s blocks (each
with around 8.9M packets and 370K flows) and configure all tables to have 8,192 entries (the next
power of two above their setting of 4,500). We also show data plane results for 16K entries; Mantis’s
performance was unchanged.

Compared to sFlow, Mantis is significantly more accurate due to its higher sampling frequency.
This effect becomes pronounced as we approach sFlow’s sampling granularity. Compared to both
data-plane approaches, Mantis provides slightly worse but comparable accuracy for large flows, and
orders of magnitude better accuracy for small flows. The overall trend holds across table sizes. The
reason is that, in Mantis, inaccuracy is caused primarily by sampling error, which is bounded; in
contrast, sketch inaccuracy is due to collisions, which may misattribute arbitrarily many bytes to the
wrong flow.

Figure 3.15 shows the reaction in action. 250 legitimate TCP flows utilize 20% of a 10Gbps bottle-
neck link before a single malicious sender arrives and blasts UDP traffic at 25Gbps using a DPDK
sending script. The Mantis reaction can install a mitigation rule within ∼100µs (from the times-
tamp of the first packet of the malicious flow). Accounting for packet delays and TCP mechanisms,
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Figure 3.16: The time to accurately detect failures and reroute for a robust Mantis-based gray failure
detector.

the benign flows return to steady-state operation within ∼500µs, orders of magnitude faster than
traditional reconfiguration.

3.9.2. Route Recomputation on Gray-failures

The second use case leverages Mantis’s reaction time more directly via a gray-failure route recom-
putation scheme. In this use case, the reaction loop measures the frequency of heartbeats from
neighboring nodes and triggers a control-plane route recomputation when the frequency drops be-
low a threshold.

Algorithm. Our failure detection scheme is based on a previously proposed gray-failure detec-
tor [128] whose original design required specialized hardware support. In our formulation, we
install in every node adjacent to the switch a heartbeat generator that produces high-priority pack-
ets at a granularity of Ts (1µs in our tests). The detecting switch accumulates a per-port count of
these heartbeats and the current timestamp in the data plane.

By polling (serializably) the counts and timestamp, a Mantis reaction can compare the number of
observed heartbeat messages with the number of expected messages. More specifically, it can use a
threshold δ = ⌊η Td

Ts
⌋ where Td is the time since the last dialogue and η ∈ [0, 1] captures expectations

for the successful delivery of heartbeats—a high η will demand amore reliable link and catch failures
faster and a low η will allow for more outliers at the cost of reaction time. Two consecutive polling

77



periods with fewer than δ heartbeats trigger recomputation and installation of new routes.

A few features of this use case would be challenging without Mantis. Compared to a traditional
control plane solution that polls raw packet counters, Mantis offers fast reaction speed and seri-
alizable reads of counters/timestamps that remove inaccuracies due to data/control-plane latency.
Compared to a fully data plane solution that computes the threshold and activates detours, Mantis
avoids the significant overheads of approximating division when computing δ [161] by offloading
it to the control plane. Involving the control plane also opens up the possibility of arbitrary route
recomputation and table modifications (data planes are typically limited to static backup paths or
inefficient detour protocols [126]).

Results. Figure 3.16 shows the end-to-end reaction time of failure detection and route recomputa-
tion in Mantis for various configuration parameters. To emulate link failures, we leveraged switch
APIs that disabled physical ports on the switch. Reaction time is defined as the difference between
the control-plane timestamps of the link-down event and the installation of the new routing rules.

Figure 3.16a shows that Mantis can restore connectivity within 100–200µs with low variance. What
variance it does have is a result of the position of the failure in the first Td window—if it occurs right
before the ASIC reads the count, detection is faster. Figure 3.16b shows reaction time for different
ηs. Overall, the impact of η is low as the majority of the reaction time is due to measuring all of the
ports and ensuring isolation. We contrast the above results to typical control plane failure detectors
that require 10s of ms to detect failures and an additional few ms to route around them [128]. We
also contrast the results to an idealized detection algorithm [88], which would be limited by sam-
pling accuracy rather than detection latency. For example, η=20% and Ts=1µs implies a minimum
reaction time of 15µs. Waiting for consecutive threshold violations would increase this time. The
slightly lower latency comes at the cost of the benefits of control plane route recomputation.

3.9.3. Hash Polarization Mitigation

Our third example is inspired by conversations with production network operators who noted the
need to tune ECMP hashing functions for optimal load balancing given a particular packet header
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distribution. P4R can be used to reconfigure the inputs to a hash function at runtime to shift the
function over time.

It can accomplish this by replacing the ‘5-tuple’ input into the ECMP hash function with fivemalleable
fields, each of which can become a reference to alternative fields in the packet’s headers. To constrain
the number of instantiated field_lists, we apply the optimization from the end of §3.4.1. The reaction
function then takes a register array of per-egress packet counters and computes the Median Absolute
Deviation (MAD) of the port utilizations. When the MAD differs for a sufficient amount of time, it
shifts the inputs to find a better hash configuration for the current workload.

Compared to a control plane implementation that polls egress counters, Mantis provides isolation
guarantees, which have been shown to be critical when evaluating ECMP balance [203, 187]. Com-
pared to a data plane implementation that does the comparison in-band, the algorithm requires two
operations that are difficult on today’s switches. The first is the need to propagate egress counters
(where packet counts can be observed) to the ingress (where routing decisions are possible), which
often requires a recirculation. The second is the MAD computation, which traditionally requires
computing the data’s median, then the median difference from that value. A streaming algorithm
suitable for use in networks would likely require us to use estimates of the median over only prior
data and assume that value does not change significantly over time [4].

3.9.4. Reinforcement Learning

Finally, we note that Mantis’s reaction abstraction is a good fit for feedback loops like those of Rein-
forcement Learning (RL). More formally, in each iteration i, the Mantis agent measures data plane
state, si, and reacts in some way, ai. The state then transitions to si+1 resulting in a scalar reward
ri. During execution, Mantis will make observations of the form ei = (si, ai, ri, si+1) and adjust to
maximize the expected cumulative reward.

Many tasks can fit into the above framework, but as an example, we consider the task of tuning the
DCTCP ECN threshold heuristic [33] to optimize the sum of the utilization of the switch with the
inverse of queue length. We do this via off-policy Q-learning [175]. Specifically, we cast the ECN
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marking threshold as a malleable value, configurable from the control plane via reactions ai, and
poll queue depth and a counter register from the egress pipeline as the observed state si. At each
step, Mantis uses an ϵ-greedy policy to either exploit or explore the space; updates of the state-value
function follow the TD control algorithm in [175].

Although others have proposed in-network RL previously, these solutions have tended to rely on
custom accelerators [122]. RL is difficult in existing switches both because of the need for a feedback
loop and the extremely limited computational ability of switch ALUs. Instead, Mantis-based RL can
leverage the CPU and can easily extend to arbitrary models, including neural networks.

3.10. Related Work

Over the years, a sequence of influential work [176, 137, 49] has provided network operators with
an increasing amount of control at an increasingly fine granularity. A subset has also looked at
control plane latency, though usually in the context of SDNs [171, 52].

Workarounds for data plane limitations. We are not the first to observe the limitations of today’s
programmable switches [46], and a slew of recent work has proposed data plane approximation-
s/workarounds for specific building blocks [162, 161, 169]. While both innovative and effective, it
is not clear that every protocol can be adapted to a pure P4-model, nor is it clear that every oper-
ator will have the time/expertise to develop an adaptation. Our work takes a different approach,
allowing users to use arbitrary C as long as the application fits in the ‘reaction’ paradigm.

A subclass of the above workarounds involves the control plane in the workaround for precisely the
reasons Mantis does [187, 163, 186, 202]. Mantis is a generalization of these proposals and one
that presents a convenient (and potentially finer-grained) abstraction.

Alternative hardware architectures. Similar in spirit is work that has proposed alternative hard-
ware solutions to the problem of data plane expressivity. Some of these propose and use modifica-
tions to RMT-style switches [90, 167, 142, 105, 88]; others propose the use of distinct hardware
architectures such as FPGAs [132, 66, 96]. Unfortunately, given the current trends of network band-
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width versus compute power, it is unlikely that future switches and routers will be both line-rate and
Turing-complete. In contrast, Mantis strives to provide a high degree of expressiveness on today’s
RMT switches.

Update and measurement isolation. Ensuring consistency and isolation of network updates is a
classic problem in traditional and SDN networks, and many solutions have been proposed in those
domains [67, 154, 98]. Some of these have also used a two-phase protocol [32, 106, 154]; however,
as mentioned in §3.5.1.2 our focus on frequent, repeated updates of the data plane distinguish our
design, implementation, and optimizations. Related work in the data plane has instead tended to
focus on cross-pipeline consistency [187] and intra-pipeline atomicity [168].

Data plane virtualization. Finally, prior work has also observed the utility of match tables for
runtime modifications [80, 200]. As mentioned in §3.3, however, this comes at a high cost. Instead,
we target reactions in which most of the data plane is fixed, with only a few parameters dependent
on current network conditions.

3.11. Conclusion

In this chapter, we describe Mantis, a framework that reformulates common network tasks as reac-
tions to current network conditions. We show that the Mantis compiler and control plane architec-
ture enable fine-grained RTT-level reaction loops, while the P4R language simplifies the process of
designing and implementing reactions.
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CHAPTER 4

REDUCING ‘TAX’ OF PARTIAL SNAPSHOTS FOR MANAGING DISTRIBUTED CLOUD
SERVICES

All problems in computer science can be solved by

another level of indirection.

David Wheeler

This chapter was previously published in press as Liangcheng Yu, Xiao Zhang, Haoran Zhang, John

Sonchack, Dan Ports, and Vincent Liu. Beaver: Practical partial snapshots for distributed cloud services.

In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2024). The
dissertation author led all phases of the project, from idea development to system prototyping and
writing.

Abstract. Distributed snapshots are a classic class of protocols used for capturing a causally con-
sistent view of states across machines. Although effective, existing protocols presume an isolated
universe of processes to snapshot and require instrumentation and coordination of all. This as-
sumption does not match today’s cloud services—it is not always practical to instrument all involved
processes nor realistic to assume zero interaction of the machines of interest with the external world.

To bridge this gap, this chapter presents Beaver, the first practical partial snapshot protocol that en-
sures causal consistency under external traffic interference. Beaver presents a unique design point
that tightly couples its protocol with the regularities of the underlying data center environment. By
exploiting the placement of software load balancers in public clouds and their associated communi-
cation pattern, Beaver not only requires minimal changes to today’s data center operations but also
eliminates any form of blocking to existing communication, thus incurring near-zero overhead to
user traffic. We demonstrate the Beaver’s effectiveness through extensive testbed experiments and
novel use cases.
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4.1. Introduction

The ability to capture a consistent, global view of a system is a powerful tool. For many tasks—
deadlock detection, checkpoints and failure recovery, network telemetry, debugging of distributed
software, and many others [188, 112, 43, 118, 179, 130, 44, 65, 22, 189, 159, 31, 8, 23]—a global
view, and particularly a consistent one, is essential for correct operation. Without consistency, results
are unreliable, and the value of associated tools is questionable.

The classic method for capturing consistent global states is the Chandy-Lamport snapshot algorithm
that was proposed almost four decades ago and its subsequent variants [51, 115, 112, 136, 114,
83, 183, 188]. At a high level, these protocols flood snapshot initiation messages throughout the
system, triggering local captures of state at every node they pass in a manner that guarantees causal
consistency of the recorded values. Some versions (including the original) also include support of
capturing messages that are in-flight at the time of the snapshot, i.e., channel state.

While these protocols have been simple, effective, and widely used for decades, they all rely on the
fundamental assumption that the set of participants in the protocol is closed under causal prop-
agation. In other words, if any node can both send and receive messages from participants in the
protocol, it can propagate Lamport’s ‘happened-before’ relation [115] and must also be a participant
in the snapshot. For systems operating in isolation, ensuring full participation is trivial; however,
modern cloud deployments are not so utopian.

Today’s cloud services are often modular, e.g., structured as microservices, each of which might be
developed and maintained by a different user, team, or organization or hosted on otherwise inacces-
sible infrastructure. Take, for instance, a managed pub/sub messaging layer like Amazon’s Simple
Notification Service (SNS). As a proprietary and black-box service, users cannot directly propagate
snapshot initiation markers through the service. Further, while they might be able to add markers
to the application-level content manually, with concurrency, replication, and reordering (e.g., due
to prioritization), content-based markers are unlikely to track causal relationships accurately. Even
when developers fully control all relevant servers, the clients of the service can also introduce hid-
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den causal relationships, for example, when the user of a generative AI chatbot sends a follow-up
message based on the response to the previous prompt. Ultimately, the nature of causal consistency
means that a single non-participant can render all snapshots useless.

Observing this gap between classical assumptions and the practicalities of real-world deployments,
we ask the question: Can we make distributed snapshots practical in modern cloud data centers,
i.e., is it possible to capture a causally consistent snapshot when only a subset of the broader system
participates? At first glance, this goal seems far-fetched: With partial participation, we cannot con-
trol the messaging behaviors nor instrument any coordination logic for machines external to those
of interest. Complicating the issue is the fact that, to be practical, the protocol cannot block, e.g.,
by buffering or delaying user packets during a snapshot. In essence, this means that hidden causal
relationships between participants and external communication partners are unavoidable.

This work presents Beaver10, the first ‘partial’ snapshot protocol that extends the capability of dis-
tributed snapshots to cloud services with external interactions. Beaver provides the same basic ab-
straction as other snapshot protocols—for any event whose effects are observed in the snapshot, all
other events that ‘happened-before’ are also included. It achieves this even when the target service
communicates with an arbitrary number of external, black-box entities, regardless of their scale, se-
mantics, or placement, and despite potential multi-hop propagation of causal dependencies. Beaver
does all of this without blocking or delaying user requests. Beaver tackles this seemingly impossible
problem by:

1. Relying on two features found in all of today’s largest cloud data centers: (a) Layer-4 Software
Load Balancers (SLBs) that interpose on a subset of inbound traffic [147, 61, 146, 18] and (b)

servers with low time strata or otherwise stable clocks [15, 56, 2, 145, 124, 141, 117, 78].

2. Eschewing the enforcement of causal consistency in favor of simply detecting when violations
may have occurred, a mechanism we call Optimistic Gateway Marking (OGM).

Note that for (1b), Beaver does not rely on the traditional notion of clock synchronization that other
10The animal species known for their engineering expertise in constructing dams using locally available materials such

as rocks and tree branches.
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recent systems [56, 15, 124] are founded upon, which requires that the clocks of distinct machines
have bounded drift. Instead, it uses a much weaker property [78, 134] over the frequency drift of
a single machine11. Also note that (2) implies a tradeoff: snapshots are not always successful, but
users can be assured of their correctness when they are and retry when they are not.

At a high level, Beaver’s approach is based on the observation that when examining the causal
consistency of a snapshot, only inbound traffic is relevant and only a small subset therein. More
specifically, we can divide inbound traffic into messages that are ‘causally irrelevant’ (e.g., triggered
asynchronously and, thus, are not a part of any transitive causal relationships) and messages that are
‘causally relevant’ (e.g., triggered by post-snapshot outbound traffic but may not carry any markers
of that fact). Beaver’s OGMmechanism is an approximate but full-recall detector of causally relevant
traffic.

Our prototype12 of Beaver demonstrates that not only is it possible to build an OGM mechanism,
but by leveraging the aforementioned features of today’s cloud data centers, we can render the
possibility of rejected snapshots minimal (near-zero in many cases). To summarize, this chapter
makes the following contributions:

• To the best of our knowledge, we are the first to detail the gap between classical assumptions of
distributed snapshots and the practicalities of real-world clouds.

• We propose Beaver, the first partial distributed snapshot primitive for modern cloud services.
Beaver presents a unique design point by tightly coupling the protocol with the regularities of
the underlying data center environment.

• We evaluate Beaver through end-to-end implementation on a real-world testbed aligned with the
production data center settings. We also show that the causally consistent view provided by Beaver
enables a spectrum of use cases.
11Bounded clock drift to a low-stratum reference server is sufficient to guarantee bounded local frequency drift, but not

necessary.
12The prototype is available at https://github.com/eniac/Beaver.
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Inter-VIP
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Figure 4.1: Today’s public cloud services place SLBs to handle the external traffic to its VIP in the
inbound direction (solid lines to VIP 1). The response to inbound messages (dotted lines from VIP
1) typically bypasses its SLB to minimize the SLB traffic load.

4.2. Background and Motivation

We begin by describing the structure of today’s cloud services and the data centers in which they
reside before we discuss the application of distributed snapshots to these services.

4.2.1. Communication in Public Cloud Data Centers

Today’s cloud data centers are massive collections of servers connected by a network fabric that
host user services of diverse sizes and scopes. In this context, we can abstract user services as a
set of virtual or bare metal machines managed as a single logical entity. Each service is typically
assigned a public Virtual IP (VIP) address, and each physical machine a private Direct IP (DIP)
address [147, 61].

Software Load Balancers (SLBs). A set of dedicated servers or programmable devices is responsible
for translating between VIPs and DIPs. We refer interested readers to prior work [147, 61] for
full details, but at a high level, these layer-4 devices act similarly to traditional Network Address
Translators (NATs), allocating a new mapping for every new connection and rewriting the headers
of every passing packet according to the mapping. In cloud systems, these devices are distributed,
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replicated, and serve an additional purpose as software load balancers that spread requests over
available backend servers. A single service/VIP typically has a dedicated set of SLBs based on its
scale (e.g., ∼7–20, including replication).

The path of packets in public clouds. In the presence of SLBs, packets can take different paths
depending on the relationship between their source and destination (Figure 4.1):

Internet traffic: Incoming packets from the Internet are always routed through an SLB to translate
from the service’s publicly visible VIP to a relevant internal DIP [147, 61, 198, 138, 70, 69]. Unlike
most other NAT-like mechanisms, response packets are usually sent back directly, bypassing the SLB
using techniques like Direct Server Return (DSR) [147, 61].

Inter-service traffic: Inbound traffic from other services within the same provider also passes through
SLBs [147, 61, 198, 138, 70, 69], which still need to perform the same VIP-to-DIP translation. This
is true even if the two service’s servers are physically adjacent. Note that, like with Internet traffic,
outbound traffic can bypass the responder’s SLB; however, even in this case, the packet will still
need to pass through the SLB responsible for the destination VIP(s), as shown in Figure 4.1. Note
that while cached DIPs have been suggested to bypass inbound SLBs on the fast path [147], this
optimization is currently disabled for major classes of production traffic due to load imbalance and
cache management issues. The implication is that, at least for public clouds, this need to interpose
on all inbound traffic is ubiquitous [61, 198, 45].

Intra-service traffic: Finally, messages between sources and destinations belonging to the same VIP
are sent directly, bypassing the SLBs entirely.

Typical service communication patterns. In parallel to the above, we note that modern cloud
services rarely operate in isolation. Frontend services typically rely on a wide array of backend ser-
vices, e.g., to handle storage, analytics, and learning, thus triggering inter-service traffic. The rise
of managed cloud service offerings and microservice design patterns have further encouraged mod-
ularity and the associated growth in the number of distinct services involved in processing a single
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Figure 4.2: A minimal example of a consistent cut for 2 processes p0, p1 and 6 events e0,1,...,5. The
global snapshot formed from the collection of and is a ‘causal cut’ of the event timelines for all
processes, where and indicate snapshot initiations triggered out-of-band or by receiving marker
messages, respectively.

user request. At a more basic level, most cloud services take requests from and return responses to
external clients, each with its own internal, causality-carrying logic.

4.2.2. Revisiting the Chandy-Lamport Snapshot

The ability to capture a consistent snapshot of a cloud service’s global state is a powerful tool. Indeed,
many problems in distributed systems boil down to determining the global state across machines,
including distributed logging and debugging, network telemetry, checkpointing and recovery, and
deadlock detection [181, 51, 112, 65, 188, 23].

Intuitively, a snapshot is a collection of local states captured from the processes of a system. For
simplicity, we omit channel states in our definitions, but the analysis is similar. The snapshot is
deemed consistent if the captured states at each process ‘cut’ the timeline of events in a way that
respects the following definition:

Definition 1. (Consistent Snapshot [51, 181]). For a snapshot, let C be the set of events on every
process that occurs before the ‘cut’. C is causally consistent iff ∀e ∈ C, if e′ → e, then e′ ∈ C, where
x→ y denotes that x ‘happened before’ y.

The seminal Chandy-Lamport algorithm was the first to present a solution for this problem. We refer
the interested readers to the original paper [51] or a distributed systems textbook [181, 112] for
complete details, but we give a simplified description of the model and the protocol below:

• Model: A system involves a set of asynchronous processes P = {p0, p1, . . . , pN−1} that interconnect
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with each other through FIFO message channels. Each process pi holds state of interest, si, that
may change in response to local events (e.g., local computation, message sends or receives, etc.).
A global snapshot involves a union of states {si} recorded at different times for all processes.

• Protocol state machine: The protocol requires coordination in all processes p ∈ P . An initiator
process first records its local state and then sends a marker message to all others. The captured
state is application-dependent and can range from a single bit representing the state of a lock to
all of local memory. When any other process pi receives a marker message for the first time, it
records its state si and, to ensure consistency, sends marker messages immediately through all
other channels.

Later variants refine the basic algorithm to generalize channel assumptions, allow for concurrent
initiation, or reduce message complexity [112, 136, 114, 83, 183, 188]. In particular, the Lai-Yang
algorithm permits non-FIFO and lossy channels by having processes piggyback a single marker bit
in every sending message [114] rather than sending separate marker messages as in the original
protocol. Upon receiving a message with a marker bit set, the receiving process first records the
local state, processes the payload, and sets the bit for future sending messages. Additional bits
can be used to support concurrent snapshots. Figure 4.2 shows a consistent cut with the Lai-Yang
algorithm.

4.2.3. A Case for Partial Snapshots

The above snapshot algorithm makes a fundamental and implicit assumption that all processes that
can communicate with processes in P are themselves in P . Unfortunately, as previously mentioned,
today’s cloud services are frequently interconnected, with efforts toward modular design and man-
aged solutions promoting increasing complexity in the dependency graph over time. As a rough
indication of severity, previous studies have shown that inter-service traffic comprises 10–50% of
total traffic in the data center, and Internet traffic accounts for 5–25% [147, 69, 70].

Consider, for instance, a HuggingFace-like ML inference service [26] that hosts a collection of models
that can be accessed from external clients. As they are externally visible, the models are frequently
used in larger jobs, e.g., as part of an interactive chatbot (where clients submit requests based on
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Figure 4.3: An application where a distributed serving system is accessed by an external user (e.g., an
Apache Airflow workflow). The out-group process pout

0 imposes a hidden causal relationship e′
4 → e′

5
between events e′

4 and e′
5, rendering a traditional snapshot of only the serving system inconsistent.

prior responses) or more complex Apache Airflow workflows.

The inference service might want to capture a service-wide statistic (e.g., tracking the maximum
number of in-flight requests) to decide on the number of servers to provision. Any analysis of the
developer’s application that does not consider the potential dependencies introduced by external
services or clients will miss important causal dependencies.

Figure 4.3 shows a simple example of this, where a single external Airflow job makes requests to
multiple models hosted by the inference service such that only one request is outstanding at any
given time. Occasional internal messages are for monitoring and coordination. Although there
is at most one outstanding request at any given time, a traditional distributed snapshot that only
considers the inference service will not respect that bound.

For example, in Figure 4.3, the depicted cut ‘observes’ two inflight messages because it fails to
capture the external interactions (e′

5 ∈ C, yet e′
4 /∈ C). In fact, for a single client that issues a

single request at a time, an n-server snapshot can ‘observe’ any number of in-flight requests [0,
n]. These arbitrary results can cause the developer to waste money and resources on redundant
provisioning. More broadly, while the frequency and consequences of consistency violations are
application-dependent, there is often a meaningful difference between ‘correct’ and ‘incorrect’.

Although converting all cloud services into participants of the snapshot protocol might be possible
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given either (a) a well-resourced developer who can implement and manage everything (even if
machines are geo-distributed or on the broader Internet) in-house or (b) support from the cloud
provider to propagate snapshot markers on all packets, these approaches are not always feasible.
For (a), the popularity of managed services demonstrates their importance to low-cost and agile
development. For (b), forced instrumentation can lead to overhead and fragmentation for users
not involved in the snapshot. Even worse, if the external source of dependencies is a human (e.g.,
accessing your service through a browser), incorporating her into the snapshot is impractical.

A formal definition of partial snapshots. We seek the design and implementation of a partial
snapshot. In a partial snapshot, processes are divided into two groups. The first, in-group processes

P in, are the machines of the VIP(s) of interest. The second, out-group processes P out, includes all
other machines, whether in the same data center or the broader Internet.

Given these sets, we refine Definition 1 to obtain a definition of consistent partial snapshots:

Definition 2. (Consistent Partial Snapshot). Consider a universe of processes P = P in ∪ P out,
P in ∩ P out = ∅. Let Cpart be the set of pre-snapshot events for P in. Cpart is causally consistent iff
∀e ∈ Cpart, if e′.p ∈ P in ∧ e′ → e, then e′ ∈ Cpart.

Similar to traditional snapshots, for a set of in-group processes P in, if a consistent partial snapshot
includes the effect of an event e, it must include any event e′ at p ∈ P in that leads to it. Like
traditional snapshots, the ‘happened before’ relation,→ is transitive and defined over events in the
universe of processes. Unlike traditional snapshots, however, the included events only account for
in-group events.

4.3. Gateway Marking

This chapter introduces Beaver, a partial snapshot primitive that captures a causally consistent col-
lection of state for cloud services sitting behind one or more operator-specified VIPs.

Fundamentally, the nodes in P out are uncontrollable and, as a result, can introduce arbitrary hidden
causal relationships, disrupting the consistency of traditional snapshots. At the core of Beaver is
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Figure 4.4: With the gateway indirection, Beaver’s MGM results in a new frontier at the in-group
process pin

1 that precedes rather than succeeds the event e′
5 (as in the scenario of Figure 4.3), con-

verging to a consistent partial snapshot.

a primitive called Optimistic Gateway Marking (OGM), which allows Beaver to detect when such
causality violations may have occurred. As we show later in §4.5, by combining this primitive with
common-case features of today’s cloud data centers, Beaver can provide:

• Partial deployability where only the in-group machines for the target VIP(s) participate while
ensuring high-rate, consistent partial snapshots for the target service(s).

• Minimal cost for data center infrastructure, for example, without switch reconfiguration or addi-
tional SLB replicas.

• Near-zero impact on existing data center service traffic.

In this section, we first introduce a strawman version of the primitive before discussing practicalities
and how Beaver addresses them with OGM in §4.4.

Strawman: Monolithic Gateway Marking (MGM). Beaver starts with a simple idea: for all packets
originating from out-group nodes and destined for in-group nodes, route them through a gateway.
The gateway is responsible for two tasks:

1. Tagging incoming packets to in-group nodes with snapshot markers.
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Symbol Description

P Set of all processes.
P in Set of in-group processes with states of interest.
P out Set of out-group processes without any control.

G Set of gateways handling inbound traffic for P in.
C Set of pre-snapshot events for a snapshot ‘cut’.
e Event tuple e = (p, m, t).

e.p The process at which an event e occurs.
e.m The message involved in an event e, if any.
e.t Global wall clock time, for ease of discussion.

ess
gmax The event when the last gateway is in a new snapshot.

ess
gmin The event when the first gateway is in a new snapshot.
ess

g The event when g ∈ G enters a new snapshot.
ess

p The event triggering p ∈ P in to enter a new snapshot.
d(p, q; V ) One way delay from p to q with intermediate nodes

v ∈ V (p, q ∈ (P ∪G), V ⊆ (P ∪G)) in sequence.
τmin Min time for an external causal chain to occur.

Table 4.1: Summary of notations in Beaver.

2. Initiating snapshots by tagging all subsequent inbound messages accordingly.

After the gateway initiates a snapshot, the protocol proceeds as a traditional snapshot among the
in-group nodes. For the strawman, assume that the gateway is implemented by a single monolithic
node. Figure 4.4 shows an example execution using the above protocol and the same application-
level communication pattern as Figure 4.3. In contrast to Figure 4.3, indirection and marking via a
gateway cause pin

1 to take the snapshot at the correct time. In a way, the gateway node in this protocol
can be seen as a stand-in for all nodes in P out. We can prove that MGM produces a consistent partial
snapshot.

Theorem 1. With MGM, a partial snapshot Cpart for P in ⊆ P is causally consistent, that is, ∀e ∈
Cpart, if e′.p ∈ P in ∧ e′ → e, then e′ ∈ Cpart.

Proof. Let e.p = pin
i and e′.p = pin

j . There are 3 cases:

1. Both events occur in the same process, i.e., i = j.

2. i ̸= j and the causality relationship e′ → e is imposed purely by in-group messages.

3. Otherwise, the causality relationship e′ → e involves at least one p ∈ P out.
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In cases (1) and (2), the theorem is trivially true using identical logic to proofs of traditional dis-
tributed snapshot protocols. We prove (3) by contradiction.

Assume (e ∈ Cpart) ∧ (∃e′ → e) but (e′ /∈ Cpart). With (3), e′ → e means that there must exist some
eout (at an out-group process) satisfying e′ → eout → e. Now, because e′ /∈ Cpart, we know ess

pin
j
→ e′

or ess
pin

j
= e′, that is, pin

j ’s local snapshot happened before or during e′. Combined with the fact that
the gateway is the original initiator of the snapshot protocol, we know that ess

g → e′ → eout → e.

We can focus on a subset of the above causality chain: ess
g → e. From the properties of the in-group

snapshot protocol, ess
g → e implies e /∈ Cpart.

This contradicts our original assumption that e ∈ Cpart!

Theorem 1 implications: Beyond correctness, the strawman exhibits several valuable properties:

1. Obliviousness to out-group semantics: The proof treats the internals of the out-group processes
as a black box. In fact, the protocol remains correct, even if the causal dependency results from
multiple network hops through distinct out-group nodes or if an element of the out-group chain
is a human.

2. Obliviousness to outbound messages: The gateway only needs to observe messages inbound to
in-group processes without requiring any visibility or tagging of outbound messages. MGMs
achieve this by initiating the snapshot at the gateway, which—as a stand-in for P out—obviates
the need to track dependencies carried to the out-group.

SLBs as a candidate for gateway marking. The SLBs described in §4.2.1 are a convenient candi-
date for implementing gateway marking as VIPs are a natural granularity for service-specific partial
snapshots, and SLBs already interpose on all incoming traffic to a VIP—regardless of whether it is
from the Internet or a different service. MGM’s obliviousness to outbound messages helps here as
well, making the system amenable to DSR.

Of course, assuming that a single server can handle all incoming traffic to a service is not feasible. The
scale of modern SLBs serves as proof that even for simple gateway processing incoming requests for
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Figure 4.5: An inconsistent partial snapshot using two asynchronous SLBs g0, g1. When e′
8.m arrives

at g1, g1 has not initiated the new snapshot mode to mark the message, thus triggering the violation.

a single service, multiple servers are necessary to handle typical data volumes, load balance among
SLBs, and provide fault tolerance.

4.4. Optimistic Gateway Marking (OGM)

Beaver extends gateway marking to practical, distributed environments using OGM. First, to see why
asynchronous SLBs could break the consistency guarantee, consider a simple scenario in Figure 4.5
where two SLBs, signaled by an out-of-band controller, initiate a new snapshot. When g0 initiates
snapshot mode and marks e′

6.m, it triggers a snapshot at pin
0 . However, a new message e′

2.m from
pout

0 is routed to a different gateway g1
13, which has not yet entered snapshot mode. This leads to

inconsistency: while e′
5 ∈ C and e′

4 → e′
5, e′

4 /∈ C.

To block or not to block? An obvious solution would be to block inbound packets at SLBs during
a snapshot and only resume forwarding them after all SLBs have ‘committed’ to the new snapshot.
Unfortunately, this method introduces large overheads—not only to the applications, whose response
times will spike while the SLB is blocking requests but also to the cloud providers, where the SLB
would require large buffers and overprovisioned capacity to drain said buffers after a snapshot.
13This is typical in ECMP routing, where connections even from the same source may reach different SLBs.
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Rather than trying to enforce consistency, Beaver seeks a method to (a) detect inconsistency, (b)

reject snapshots when they are potentially inconsistent, and (c)minimize the rejection rate. It seeks
to do this with near-zero overhead for applications and cloud infrastructure.

4.4.1. Causal Relevance and Irrelevance

A key idea in Beaver is that, even among the incoming traffic to the in-group, only a subset of
that traffic is causally relevant. Using Figure 4.5 to illustrate, an incoming message, m, is causally
relevant only when (1) an initiated SLB (g0) sends a marked message to an in-group node (e.g.,
pin

0 ), (2) that node interacts directly or indirectly with an out-group node (e.g., pout
0 ), and (3) that

out-group node sends m back to a different in-group node via an uninitiated SLB (e.g., g1). Other
communication patterns, e.g., an m triggered by an uninitiated process, are causally irrelevant.

In essence, causally relevant messages are only produced if the message loop: GWA → INA →

OUT → GWB all occurs within the window of time in which the gateways are propagating snapshot
initiation. More formally:

Theorem 2. In a system with multiple asynchronous gateways, let the wall-clock time of the first
and last gateway initiating snapshots be ess

gmin.t = miness
g

(ess
g .t) and ess

gmax.t = maxess
g

(ess
g .t), ∀g ∈ G,

respectively. Also let τmin = min(d(g, g′; {p, q})), ∀g, g′ ∈ G, p ∈ P in, and q ∈ P out. If ess
gmax.t −

ess
gmin.t < τmin, then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed setting. Similar to Theorem 1, there are
three cases, with (3) being the one that differs. We again prove it by contradiction.

Assume (e ∈ Cpart) ∧ (∃e′ → e) but (e′ /∈ Cpart). As before, there must be some chain e′ → eout →

eg → e. Because e′ /∈ Cpart, we have ess
pin

j
→ e′ or ess

pin
j

= e′, that is, pin
j must have been triggered

directly or indirectly by an inbound message. Denote the arrival of this inbound message at its
marking gateway as eg′ . By the definition of τmin, we have eg.t − eg′

.t ≥ τmin > ess
gmax.t − ess

gmin.t.
Thus, at event eg, the gateway must have already initiated the snapshot and will mark eg.m before
forwarding. This results in e /∈ Cpart, a contradiction!
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Theorem 2 implications: Informally, this theorem suggests that if the time gap between the first and
last SLB snapshot initiations (ess

gmax.t − ess
gmin.t) is sufficiently small, or the minimum time for a

message to revisit a gateway (τmin) is long enough, causally relevant messages are impossible and
the concerned partial snapshot is provably consistent14.

Causally relevant messages are rare in the real world. Intuitively and with anecdotal evidence,
the inequality ess

gmax.t − ess
gmin.t < τmin can be satisfied with an exceedingly high probability in

real-world contexts:

For the LHS (ess
gmax.t−ess

gmin.t): This time gap is essentially the difference in one-way delays between
the controller and each of the SLBs. As SLBs share a region with the target service, a well-placed
initiator (e.g., equidistant from all target SLBs or one whose messages are forced to travel to the root
of the data center fabric) can simultaneously ensure reactive snapshot initiation and ess

gmax.t−ess
gmin.t

of near zero.

For the RHS (τmin): This value includes multiple network hops, extending from an SLB to in-group
nodes, then to out-group nodes, and back to an SLB. Particularly when out-group nodes are in
other data centers or are end-host clients, this value can be orders of magnitude higher than typical
values for the LHS—on the order of milliseconds or tens of milliseconds. However, even when the
out-group nodes are in the same region or data center as the in-group, we can still expect that this
value is higher than any observed delta between initiator-to-SLB one-way delays as it includes at
least three trips through the data center fabric in addition to processing time at the in/out-group
network stacks15.

4.4.2. Efficiently Verifying Causal Irrelevance

The primary technical challenge of OGM is minimizing the LHS of the above inequality and efficient-
ly/confidently verifying that the resulting inequality held for a given snapshot, even in the presence
of message drops, delays, and other sources of unexpected latency. The cloud provider can compute
14In principle, another sufficient condition is when the in-group snapshot completes quickly enough. We do not rely on

this because it has worse scaling properties than SLB convergence, but it can be added as an optimization.
15Even with the detection criteria later described in §4.4.2, LHS entails only 2 trips and encompasses a simpler data

path with SLB stacks that are heavily optimized for minimal processing latency and jittering [61, 198, 69, 66].
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Figure 4.6: The time difference t1− t0 as a safe upper bound for essgmax.t−essgmin.t by querying a single
hardware clock source with bounded frequency drift.

the two sides of the inequality separately.

4.4.2.1 Computing a Lower Bound for the RHS

For the RHS, the value can be determined statically, as dynamic network conditions like failures and
congestion can only add to the latency of the message sequence. The latency is then equivalent to the
sum of each hop’s minimum propagation, transmission, and processing delays. These values depend
on the relative placements of the in-group nodes, SLBs, and out-group communication partners, but
all of those are known at runtime. To ensure a conservative lower bound, operators can and should
assume that application-level processing and transmission delays are zero (Figure 4.13).

4.4.2.2 Determining an Upper Bound for the LHS

The LHS is harder to compute statically as failures and congestion mean a true upper bound may
not exist16. Instead, we need to measure an upper bound online for the observed difference between
gateway timestamps (ess

gmax.t− ess
gmin.t) for the snapshot in question.

The typical method of measuring time gaps on different machines is via clock synchronization. Al-
though today’s clock synchronization techniques can achieve microsecond or sub-microsecond pre-
cision, fundamentally, they rely on frequent cross-machine messaging to correct the offset, which is
sensitive to congestion and failures, thus impacting the bound on clock drift in the worst case [71,
16Beyond the heat death of the universe or at least the life of a data center.
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195]. Data center services like TrueTime provide a reliable interface to query time points and calcu-
late their differences. However, a general timing service incurs higher overhead and a typical clock
uncertainty range of 1–7 ms [56], much greater than the timescales relevant for Beaver detection.

Synchronization-free approach. Beaver adopts an alternative, customized approach using a single
hardware clock to calculate the elapsed time. As depicted in Figure 4.6, the controller queries the
start time at t0 from this clock source with a read tr

0 before initiating a new snapshot. Once the final
ACK from the SLBs arrives, it reads the end time tr

1 at t1 from the source, where t0, t1 represents
the global wall clock time, and tr

0, tr
1 the actual clock reads. This hardware clock can be a local

hardware clock from either a COTS PCIe NIC [16] or from one equipped with an atomic clock,
which are increasingly deployed in production data centers [15, 21].

Note that t1−t0 is an upper bound on the LHS as t1 > ess
gmax.t and t0 < ess

gmin.t. Thus, if t1−t0 < τmin,
the partial snapshot under examination is consistent. In practice, the time difference tr

1 − tr
0 is ad-

justed to account for the maximum frequency drift ∆f according to the clock data sheet, to deter-
mine an upper bound estimate for the corresponding elapsed time t1− t0, thus the detection criteria
(tr

1 − tr
0) × (1 + ∆f) < τmin. This method, which relies solely on a single hardware clock to cal-

culate time differences, eliminates issues common in traditional clock synchronization approaches,
such as cross-machine message congestion and errors stemming from delays in clock readings due
to software interrupts. The frequency drift of a single clock is relatively low and is mainly determin-
istically affected by temperature, which has low variance in modern data centers [124, 141, 191].
Standard quartz crystal oscillators in production data centers typically drift by ±100 ppm, or 0.01%
error [124, 141, 56, 117, 78]; recent studies are able to reduce this drift of quartz clocks in com-
modity data center servers to ±100 ppb (10−7 error) by calibrating the offset due to temperature
variations. More advanced oscillators (e.g., atomic clocks) can reduce this frequency drift by further
orders of magnitude [2, 145] (Table 4.2).

Snapshot invalidation. While ensuring correctness (i.e., no false negatives), our proposed upper
bound adds an additional margin to the original time gap. This margin comprises the clock query
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Rubidium JILA Sr Quartz Quartz (calibrated)
∆f ±0.05 ppb ±2.1× 10−18 ±100 ppm ±100 ppb

Table 4.2: Frequency drift (∆f) uncertainty range of today’s clocks, ppb (parts per billion) = 10−9,
ppm (parts per million) = 10−6.

latency and the RTT between the controller and the SLBs, which may lead to false positives. In
practice, however, we note that many devices support precise hardware timestamping along with the
packet data path (i.e., when sending the first notification and when receiving the last notification).
Our evaluations on a cloud data center in §4.7 reveal that the resulting snapshot invalidation rate
is < 5% for typical SLB scales today, even in worst-case scenarios when the out-group nodes are in
the same data center and under stressed snapshot operation frequencies.

In the end, false positives—while leading to the invalidation of potentially consistent snapshots—are
of little concern due to our system’s efficient snapshot operations and its ability to achieve a high
snapshot rate.

4.5. Beaver’s Partial Snapshot Protocol

As mentioned previously, Beaver’s snapshot ‘quantum’ is a single VIP—Beaver can provide snapshots
for one or more such VIPs within a single region.

Operation. At a high level, Beaver’s partial snapshot protocol distinguishes itself from traditional
snapshots in two aspects: (1) its lightweight SLB marking logic for inbound traffic and (2) the
snapshot verification process at the controller.

In-group processes: Among in-group processes, Beaver inherits its coordination logic (and the omit-
ted, optional recording of in-flight messages) from prior snapshot algorithms [114, 188] that piggy-
back ‘marker’ information per message to handle non-FIFO and lossy channels17. Figure 4.7 depicts
the core logic: upon receiving a packet, either from an SLB or another in-group process, the current
in-group process evaluates if pkt.sid > csid. If true, it signals a new snapshot operation: it records
17Optional broadcast of marker messages from SLBs to in-group processes may accelerate the snapshot convergence

when service traffic is infrequent.
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• csid: Current snapshot ID state for p ∈ P in or g ∈ G.
− pkt.sid: Snapshot ID (Nb) in SLB encapsulation header.
− pkt.dst: Destination address of a user packet.
− pkt.src: Source address of a user packet.

1 function IN-OnReceive (pkt):
2 /* Signaled a new snapshot */
3 if pkt.sid > csid then
4 Record the state of interest;
5 Send FIN for csid + 1, . . ., pkt.sid to the controller;
6 csid← pkt.sid;
7 function IN-OnSend (pkt):
8 if pkt.dst ∈ P in then
9 pkt.sid← csid;

10 function SLB-OnReceive (INIT):
11 if INIT.sid > csid then
12 csid← INIT.sid;
13 ACK for csid + 1, . . . , pkt.sid to the controller;
14 function SLB-OnReceive (pkt):
15 /* Mark inbound packet from out-group */
16 if (pkt.dst ∈ P in) ∧ (pkt.src /∈ P in) then
17 pkt.sid← csid;
18 Forward packet to pkt.dst;

Figure 4.7: Partial snapshot logic (with asynchronous control plane operations) at in-group pro-
cesses and SLBs.

the relevant state, updates the local csid, and asynchronously notifies the controller of completion.
For outgoing packets, if the destination address falls within the scope of in-group processes, the
process updates pkt.sid to its current csid.

SLBs: As discussed in §4.4, Beaver instantiates the gateway overlay with the SLBs. For the set of SLBs
handling the target in-group process traffic, Beaver embeds logic for marking inbound messages. On
receiving an inbound packet, an SLB first checks if the destination VIP is for the in-group [line 16]—
since operators may multiplex a single SLB server for multiple VIPs—and modifies the snapshot ID
field accordingly. On the control path, the SLB initializes a new snapshot upon receiving an ‘INIT’
notification from the controller and subsequently sends the acknowledgment to the controller. This
process happens out-of-band to avoid biases in the snapshot verification process. Combined, Beaver’s
gateway logic requires minimal processing and can be incorporated into existing SLB data planes at
line rate, including hardware-accelerated ones.
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• csid: The next snapshot ID to initiate at the controller.
• receivedFIN[sid][p]: If received FIN from p ∈ P in for sid.
• receivedACK[sid][g]: If received FIN from g ∈ G for sid.
• t0[sid]: Timestamp t0 for sid.
− FIN.p: The source process sending the FIN.
− FIN.sids: The associated sid(s) of the FIN.
− ACK.g: The source SLB sending the FIN.
− ACK.sids: The associated sid(s) of the ACK.

1 function Controller-OnSnapshot():
2 num_inflight_ss = 0, csid = 0;
3 while num_inflight_ss < 2N−1 − 1 do
4 /* Optional rate-limiting for less greedy snapshots */
5 t0[csid] = queryClock();
6 Send INIT s (INIT.sid = csid) to all g ∈ G;
7 num_inflight_ss += 1, csid += 1;
8 function Controller-OnReceive(FIN):
9 for sid ∈ FIN.sids do

10 receivedFIN[sid][FIN.p] = 1;
11 /* Check all FINs received with bitwise negation */
12 if ∼ receivedFIN[sid][·] == 0 then
13 num_inflight_ss −= 1;
14 receivedFIN[sid][·] = 0;
15 function Controller-OnReceive(ACK):
16 for sid ∈ ACK.sids do
17 receivedACK[sid][ACK.g] = 1;
18 /* If all ACKs received */
19 if ∼ receivedACK[sid][·] == 0 then
20 if (queryClock()− t0[sid])(1 + ∆f) < τmin then
21 /* Accept the snapshot */
22 else
23 /* Invalidate the snapshot */
24 receivedACK[sid][·] = 0;

Figure 4.8: Main controller logic for continuous snapshots.
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Controller: With Beaver, operators can designate any server with direct or indirect access to a stable
clock source, preferably located near the pertinent SLBs, as the controller. The core logic to initiate
snapshots, shown in Figure 4.8, involves continuously sending INIT commands to SLBs to initiate
new snapshots. The protocol maintains the number of snapshots in flight and controls the snapshot
frequency. The detection of invalid snapshots follows the methodology outlined in §4.4.2: The
controller queries the clock read for t0 before sending notifications [line 5] and uses the clock reads
upon receiving the last ACK to determine the snapshot’s validity [line 20]. It the local NIC supports
hardware time-stamping capabilities, queryClock() can occur along the data path during the send
of the first INIT notification and the receive of the last ACK response.

Handling packet loss, delay, and reordering. Beaver is robust to faults in data- and control-plane
communications.

Data plane: Unlike the original Chandy-Lamport protocol, which relies on separate marker mes-
sages, Beaver draws inspiration from subsequent variants [114, 188] to incorporate marker infor-
mation by piggybacking it into existing traffic. This piggybacking makes Beaver inherently resilient
to ‘marker’ losses and reordering on the data path, whether these occur within the network core or
the host networking stacks.

Control plane: Although timely and reliable delivery of control messages can be beneficial (e.g.,
through an alternate port that is dedicated to control tasks) Beaver does not depend on it for its
core functionality. It operates effectively even with unreliable transport protocols such as UDP and
it requires only a negligible number of control messages: |P in| FIN messages (or less as members of
the in-group, P in, can batch updates in a single ACK on the increments in prior snapshots), |G| INIT
commands, and |G| ACK responses for each snapshot.

While delays or losses of the above messages might slow down the snapshot rate—a minimal impact
as observed in our evaluation—they do not compromise the correctness of Beaver. The controller, in
response to any delays or losses, simply invalidates the affected snapshot.
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Handling failures. One important problem is how to handle failures of the SLBs and backend
servers. Fortunately, most public clouds today already apply central management mechanisms that
ensure fault tolerance and state consistency during changes in membership of machines for each
VIP18[61, 147, 45, 69]. Operating on top of the abstraction, Beaver’s controller coordinates with
the SLBs and backend servers belonging to the requested VIP (as indicated by the current central
state), incurring minimal additional costs and deployment complexity. To handle failure events
during a snapshot, Beaver incorporates a single ACK mechanism (Figure 4.8): if the controller does
not receive the ACK from an SLB or an in-group process, Beaver simply invalidates the snapshot or
drops affected states while guaranteeing correctness.

Supporting parallel snapshots. Many cases, such as event-driven or telemetry tasks, require higher-
frequency state capture [188, 193]. Rather than waiting for the completion of one snapshot before
initiating another, limiting the snapshot rate to the slowest component in the snapshot convergence
process, Beaver can initiate snapshots concurrently. The controller ensures that the number of pack-
ets in flight remains within 2N − 1 [line 3 in Figure 4.8], the maximum concurrent snapshots sup-
ported by the header field sid. The extra −1 in the exponent is to eliminate ambiguities in comparator
operations at in-group processes [line 3 in Figure 4.7] under worst-case wrap-around conditions.

Beaver also supports parallel snapshots for distinct groups of VIPs without needing extra metadata.
This is facilitated by the SLBs’ ability to naturally segregate operations based on VIP information.
Consequently, the same sid header space can be utilized for simultaneous snapshots across groups
with non-overlapping VIPs.

4.6. Implementation

We implement a Beaver prototype on a cloud data center [59] (Figure 4.9) that aligns with a pro-
duction setup [147, 18, 61].

Supporting SLB-associated functionalities. We implement an end-to-end workflow to mirror the
behaviors associated with SLBs in production data centers [61, 18, 147]. Additionally, our system
18Unlike the DIP caching feature in §4.2.1, the consistency mechanism was originally absent in [147], but later incor-

porated as an essential component.
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Figure 4.9: Evaluation setup considering three different out-group locations: within the same data
center, data center of a different region, or on the Internet (from a local laptop).

facilitates automated service discovery operations through an out-of-band controller server.

SLB implementation: Our setup configures DELL EMC PowerSwitch S4048-ON [17] for layer-3 ECMP
forwarding based on service VIPs to SLBs. Emulating prior work [61, 18], we implement the core
SLB functions with DPDK [7], involving around 1860 lines of C/C++ code. Each SLB maintains an
in-memory connection flow state, employs consistent hashing on the 5-tuple of each packet to deter-
mine the appropriate backend server, and caches the decision for future decisions. Then, the SLBs
encapsulate the inbound packet’s header and forward it to the backend server with the destination
DIP. To maximize utilization of SLB servers, we perform load balancing across different CPU cores
using RSS.

Backend servers: To maintain transparency for the upper-layer applications, we implement the re-
computation of checksums, NAT caching in a shared eBPF map, and the de-encapsulation of incom-
ing packets from the SLB via XDP [84]. For outbound packets, we instrument the Linux tc to look
up the NAT entries and perform the header transformations to replicate Direct Server Return (DSR).
In total, they involve 1040 lines of C/C++ code.

Topology. Our testbed supports typical communication patterns, encompassing a variety of out-
group positions, including other VIPs within the same data center, VIPs in other data centers, and
Internet clients—all through the layer-3 switches and SLBs, along with DSR on the return path.
We scale up to 16 SLB servers, each capable of supporting 64 in-group processes, due to limits in
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resource availability. Our current testbed servers are equipped with Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz and dual-port ConnectX-4 Lx NICs.

Integrating the Beaver protocol. We implement Beaver’s partial snapshot protocol from §4.5. The
SLBs append a snapshot ID to inbound packet headers that encapsulate the destination DIP and
the source SLB IP. The in-group processes and SLBs embed Beaver’s snapshot logic from Figure 4.7
through XDP and DPDK. The additional logic involves 68 lines of C++ for SLB data-path logic and 102
lines of C codes for eBPF at in-group processes. The controller server, following Figure 4.8, automates
the initiation, control, collection, and verification of snapshots. We use UDP for bi-directional control
messages with SLBs and unidirectional messages from in-group servers. The controller currently
exploits local NIC hardware timestamping (SOF_TIMESTAMPING_RAW_HARDWARE) for precise timing
of INIT and ACK messages on their data path [20].

4.7. Evaluation

Our evaluation focuses on exploring the following questions.

• Can Beaver sustain fast snapshot rates? How does the scale of the in-group nodes and SLBs affect?
(§4.7.1)

• What about effective snapshot rates? How often do Beaver invalidate snapshots in cloud data
centers? (§4.7.2)

• Does Beaver’s distributed coordination affect the existing service traffic? (§4.7.3)

• How does Beaver help real-world services? (§4.8)
4.7.1. Beaver Supports Fast Snapshot Rates

To stress-test Beaver, unless otherwise specified, our evaluation runs Beaver at very high snapshot
frequencies. To further ensure that our performance/overhead results are conservative, state cap-
ture in the snapshots are NOPs. Real local record operations (which are application-dependent and
orthogonal to the study of distributed snapshot protocols) will only result in less contention and
overhead.
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Figure 4.10: Beaver’s sustained snapshot frequency versus a strawman approach with blocking op-
erations at varying scales of SLBs and backend processes.

As a measure of Beaver’s efficiency and scalability, even at these high rates, Beaver exhibits good
performance. Figure 4.10 shows the maximum snapshot rate compared to a strawman approach,
which waits for completion before initiating another. The maximum rate is determined by increasing
the snapshot frequency until we observe backlogs in the ACK and INIT message notification queue.
We vary the number of gateways (|G|) up to 16, aligning with typical values for SLBs assigned to a
VIP.

The baseline is limited by the snapshot convergence time, which depends on factors such as scale,
traffic pattern, and topology. In contrast, Beaver’s parallel snapshot capability significantly enhances
the rate and shifts the bottlenecks to the processing power of the controller’s CPU. Even at the
maximum scale, Beaver reaches a snapshot rate of > 77000 Hz, > 18× that of the strawman. In
practical applications, leveraging a more powerful processor or scaling the controller server could
further improve its speed.

4.7.2. Beaver Invalidates Snapshots Infrequently

With a high snapshot frequency, how does Beaver perform in terms of effective snapshot rates? Recall
in §4.4.2, Beaver uses an upper bound t1 − t0 for the time gap between SLB initiations (ess

gmax.t −

ess
gmin.t) to eliminate the need for time synchronization, it invalidates a snapshot if the bound is
greater than τmin, the minimum time to for an external causal chain to occur. While this upper
bound ensures correctness, it may reject snapshots and reduces the effective snapshot rate.
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Figure 4.11: Beaver’s effective snapshot rates under varying snapshot frequencies and in-group pro-
cess scale.
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(b) |G| = 4, |P in| = 256
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(c) |G| = 8, |P in| = 514
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Figure 4.12: CDF of Beaver’s upper bound t1 − t0 with the ground truth (ess
gmax.t − ess

gmin.t) for
> 10M snapshots and a zoom in to its snapshot series, under stressed scenario with 65536 Hz
snapshot frequency and varying number of SLBs/processes.

To measure the time for an external causal chain to occur, we consider three distinct scenarios
for out-group process locations in Figure 4.9. In each scenario, we set up a worst-case condition
where, immediately following an SLB’s snapshot initiation, the SLB forwards an inbound packet to
the closest in-group node. The in-group node then loopbacks an immediate message to out-group
node with the shortest path, which bounces the packet back to any SLB. Figure 4.13 shows that the
intra-DC scenario results in the shortest time window, resulting in τmin as 33µs. This value is robust
because, even though varying cloud conditions often cause latency spikes, they primarily affect the
tail rather than the minimum.
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Figure 4.13: Measurement of the minimum time window for a external causal chain to occur under
worst case conditions.

To stress test Beaver’s performance, we focus on the worst-case scenarios with out-group processs
located within the same data center. For other scenarios, τmin is significantly greater, leading to
100% effective snapshot rates across 10M snapshot operations. We execute Beaver in various ex-
perimental settings, including scale and snapshot frequencies. For each configuration, we calculate
the effective rate based on more than 10 million snapshots. The results, as in Figure 4.11, reveal
that the proportion of snapshots invalidated by Beaver is remarkably low even under the maximum
operating frequencies and scales of our testbed.

To better understand the results, we compare the recorded upper bound estimation of t1 − t0 with
the true ground truth ess

gmax.t − ess
gmin.t. As the two events ess

gmax and ess
gmin occur on separate SLB

machines, we synchronize the clocks of all SLBs to controller’s PTP master clock over symmetric
paths without contending traffic, which reports maximum 50 ns offsets during the ground truth
measurement. This step, meant solely to understand the behavior, should not be confused with
Beaver’s clock-synchronization-free approach. Figure 4.12 shows the comparison over > 10M snap-
shots when Beaver operates at a frequency of 65536 Hz. Overlapping tails of ess

gmax.t− ess
gmin.t and

the heads of t1− t0 are expected—the cdf of the pairwise calculation of (t1− t0)− (ess
gmax.t−ess

gmin.t)

for each snapshot clearly demonstrates that the upper bound is strictly higher than the ground truth
SLB initiation time gap. The observed outliers in t1 − t0 are typically due to queueing in our man-
ager’s processing queue at high rates or asynchrony in SLB initiations. Furthermore, the margin
introduced by t1 − t0 over ess

gmax.t− ess
gmin.t is due to the RTT between the controller and the SLBs,

which is used to ensure the theoretical upper bound without clock synchronization.
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Figure 4.14: Performances with and without Beaver’s overhead, normalized to the value without
Beaver.

4.7.3. Beaver Incurs Near-zero Impact

We also stress test the overhead of Beaver on user traffic. Figure 4.14a compares throughput with
and without Beaver under the 65536 Hz snapshot frequency and the max scale of our testbed. iperf

clients send traffic with varying degree of the total consumed bandwidth capacity of the 16 SLBs. We
also run YCSB benchmark workloads [14] with varying mix of read, update, and scan operations,
as shown in Figure 4.14 for backend servers running CassandraDB [13]. The requests follow zipfian
distributions, and the scan length adheres to the uniform distribution.

The results of various performance metrics are almost identical, confirming that Beaver has a near-
zero effect on service traffic. This is because Beaver, by design, eliminates any delay or blocking
operations on the data path for distributed coordination, and the lightweight control path messages
are orthogonal.

4.8. Use Cases

We also examine several use cases of Beaver. These examples are intended as instruments through
which we can understand its potential utility, differences versus traditional snapshots, and the se-
mantics of its causal consistency guarantee under partial deployments that were previously impos-
sible.
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Figure 4.15: Example benign and bot access patterns.

4.8.1. Detecting Anomalous Access

Web applications often feature a JavaScript browser frontend for user interaction and a backend pro-
viding service APIs. Consider a legitimate user access in an e-commerce application (Figure 4.15a).
The frontend calls a Search API fetch(“example.com/api/v1/search”), followed by a Stock API
fetch(“example.com/api/v1/get_stock”) for product details. However, malicious traffic, such as
web scrapers, might bypass the initial search stage and directly query the stock backend, potentially
overwhelming the server. This type of traffic can be challenging to detect as it differs from legitimate
traffic in intent rather than content [100, 64].

Beaver can help detect such anomaly patterns, as its partial snapshot can capture the external de-
pendency of these requests, even though it occurs through communication with the Internet. To
illustrate, we run a varying mixture of benign and illegal bot clients on our testbed. The backend
servers maintain per-client request count in a BPF map through double buffering, so as to ‘freeze’
the current state through a single switch of the pointer and minimize the impact of blocking local
record calls. Table 4.3 shows detection results calculated against the ground truth. We find that
Beaver can accurately recognize the interdependence between the accesses. For example, when
all clients are benign, Beaver consistently results in true negatives, aligning with the ground truth.
However, a polling-based approach and traditional snapshots (L-Y) can result in false positives due
to interpretations of erroneous capture of higher counts at the Search backend than at the Stock
backend.
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Bot ratio = 0% Bot ratio = 5% Bot ratio = 10%
Method TP, FP, TN, FN TP, FP, TN, FN TP, FP, TN, FN
Polling 0, 0.005, 0.995, 0 0.005, 0.062, 0.874, 0.059 0.069, 0.136, 0.666, 0.129
L-Y 0, 0.005, 0.995, 0 0.001, 0.058, 0.886, 0.055 0.011, 0.105, 0.783, 0.101
Beaver 0, 0, 1, 0 0.053, 0, 0.947, 0 0.113, 0, 0.887, 0.001

Table 4.3: Beaver’s detection accuracy versus (1) polling-based approach using time synchronization,
and (2) Lai-Yang algorithm, a state-of-the-art global snapshot protocol.

Storage A

Storage B

λ1

λ2

put(k) get(k) deref(k) deref(k)

In-group

Beaver 

partial 

snapshot

Inconsistent 

traditional 

snapshot

Lambda 

life time

Invoke

Figure 4.16: Garbage collection for the ephemeral storage for serverless analytics.

4.8.2. Serverless Garbage Collection

Backend services that support serverless applications are also a natural fit, as requests to serverless
functions rely on schedulers and logic that are not visible to the backend services or the serverless
functions themselves. Consider an application that provides storage for a serverless analytics job and
uses reference counting for garbage collection [111]. The storage service deploys multiple servers
for scalability and supports three primary APIs: get()/put(), which fetch/upload the object and
increment the reference counter, and deref(), which indicates that the previously fetched object is
no longer in use and decrements the reference counter.

Beaver’s consistent partial snapshots can support safe garbage collection decisions. To illustrate,
we instantiate two serverless functions through [97] that follow the workflow of Figure 4.16 on our
testbed. The backend storagemaintains an in-memory state of reference counters for each KV object.
When a reference counter reaches 0 in a snapshot, the controller informs the backends to recycle the
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Figure 4.17: A simplified example of geo-distributed social media application [65] which includes
distinct services such as post-upload, post-storage, and notifier.

corresponding object. During invocations, we also record the incident counts of invalid get() access
or deref() calls. We find that, across invocations, the Lai-Yang algorithm may produce inconsistent
snapshots (shown in Figure 4.16) that indicate no open references to the object—however, λ1 is
still keeping a reference to it. This leads to unsafe decisions to recycle the object associated with
the key and results in an observed invalid call percentage of 23–29%. In contrast, Beaver’s partial
snapshots guarantee causal consistency even in the presence of external communication that ensures
safe reclamation of the object and consistently results in 0 invalid calls.

4.8.3. Integration Testing

Integration testing, commonly used in CI/CD pipelines [75], extends the coverage of testing to inter-
service logic. Unfortunately, applying it to distributed applications can be challenging. Consider the
example shown in Figure 4.17, a violation of the application specification occurs when followers in
a region receive a notification and request the storage DB (case 1) before the cross-region protocol
actually replicates the post data. Recent solutions [65, 165] address the inconsistencies by form-
ing explicit dependencies (case 2). However, the involvement of auxiliary services and additional
dependencies make it difficult to capture a holistic snapshot.

Beaver offers a practical abstraction to test distributed applications by enabling partial deployment
and capturing causal dependencies relevant to the local service. By snapshotting states in post-
storage and notifier services, developers can write test cases to verify the crucial invariant above: the
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Figure 4.18: (a) Example snapshots for in-flight message tracking. (b) Comparison of estimated
number of in-flight requests with and without Beaver.

presence of a post in the storage must always precede its corresponding notification in the notifier
service. In particular, Beaver’s guarantee of causal consistency means that if a canary solution is
correct, a partial snapshot observing a log in the notifier must have captured the data entry of
the corresponding version in post-storage. Therefore, a single violating test case will suggest the
presence of bugs.

4.8.4. In-flight Message Tracking

We also revisit the example in Figure 4.3. As mentioned in §4.2.2, a useful query is to estimate
the number of concurrent requests, which can inform resource provision decisions. Figure 4.18a
illustrates a scenario with only one active request. In theory, traditional snapshots, which fail to
capture the causality between the client’s follow-up request and the prior response, can give an
overestimation of 2 in-flight messages (indicated by the cut in red). Beaver, in contrast, can capture
the external causality and results in an estimation of no more than 1 message in flight (indicated by
the cut in green).

To validate the behavior in practice, we run 100 clients concurrently that conform to the poisson
arrival pattern on our testbed. Each backend process maintains a total request and response count
value using a BPF map. Thus, the difference between the two counters indicates the number of
messages in flight. The controller then collects the snapshot of counter values and then obtains the
aggregate estimate. Figure 4.18b shows that traditional snapshots can overestimate the number of
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Figure 4.20: (a) Comparison of transaction throughput (normalized to Beaver). (b) WFG for the
inconsistent snapshot in Figure 4.19.

concurrent requests by more than 30%, while Beaver’s result consistently matches the ground truth.
Worse, a higher number of backends will lead to an overestimation further divorced from reality.

4.8.5. Distributed Deadlock Detection

A classic use of distributed snapshots is deadlock detection, a fundamental problem in distributed
systems. Consider the scenario in Figure 4.19, where themachines of a frontend service interact with
a reservation microservice to book flights and hotels on behalf of its clients. Here, a frontend server
acquires a lock from the backend server for a target resource ID and releases it after completing its
transaction. A deadlock may occur when a client requests resources that are held by others, forming
a directed cycle in the resource dependency graph (known as Wait-For Graphs or WFGs). As these
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systems (such as those used by Airbnb and Uber) encompass thousands of microservices, each with
its own sovereignty [206, 68], global snapshots are challenging and expensive to enforce.

Beaver, however, is amenable to only taking partial snapshots of the reservation service. To illus-
trate, we run backend processes that maintain the ID list of client(s) currently owning/waiting for
the local resources in memory. When the controller detects a deadlock based on a snapshot, it in-
forms backend processes to abort the current transaction. We emulate clients that request backend
resources in random order and measure the resulting transaction throughput. Figure 4.20a shows
that the traditional snapshot algorithm can suffer from more than 20% throughput drops compared
to Beaver. This is because, without accounting for the external message dependencies, it can render
a snapshot that is inconsistent (Figure 4.19), which leads to false deadlocks (Figure 4.20b) and the
unnecessary costs of deadlock resolution operations. Beaver, on the other hand, guarantees safe
detection.

4.9. Discussion

Instantiating Beaver gateways. Beaver focuses on public clouds, which already contain SLBs, im-
posingminimal changes and costs to integrate its functionality. We argue that these are where partial
snapshots are most important as smaller private clouds are easier to modify wholesale [157]. With-
out cloud providers’ support, cloud tenants could also deploy their own Beaver-compatible gateways
on virtual machines (e.g., Network Virtual Appliances (NVAs) [24]) to ensure consistency under ex-
ternal communication with clients and human users. This involves additional costs and complexities
and can be suitable if NVAs are already in use, e.g., to provide firewall functionality.

Optimizing local record operations. Similar to classic distributed snapshot protocols (§4.2.2),
Beaver is agnostic to the semantics of local record operations. An interesting problem—orthogonal
to the core mechanism of Beaver—is to enable efficient local-state capturing mechanisms, especially
when the user desires a large target state or a high snapshot frequency. Besides application-specific
practices in §4.8, we postulate that a more generic and opportunistic approach may minimize their
online impacts by focusing on state changes during IDLE times of the application. We leave a com-
plete exploration for future work.

116



4.10. Related Work

Distributed snapshots. This work builds on the large array of classic distributed snapshot algo-
rithms [51, 114, 136, 188, 181, 112, 83, 183]. To the best of our knowledge, Beaver formalizes,
designs, and implements the first partial snapshot primitive that extends their capabilities for prac-
tical usage.

Cloud data centers. Beaver is also related to works on various facets of cloud data centers, including
layer-4 load balancers [147, 198, 61, 138, 69, 45] and its clock services [56, 124, 195, 141, 191, 71,
15, 21, 117, 78]. For the former, Beaver integrates its gateway marking logic based on the behaviors
of SLBs fundamental to cloud data center services and implements a practical prototype aligned
with today’s setups. Meanwhile, Beaver builds on extensive measurement studies that highlight
the reliable properties of frequency drifts of a single clock. Combined, Beaver presents a unique
design without making any assumptions about clock synchronization that ensures consistent, high-
rate partial snapshots under external interactions while incurring minimal changes and impacts to
current operations and service traffic.

4.11. Conclusion

This chapter rethinks the classic distributed snapshots and observes the mismatch of their assump-
tions with today’s cloud services. With it, we present Beaver, the first partial snapshot primitive that
advances the capabilities of existing snapshots for practical usage in distributed cloud services. Cen-
tral to Beaver is the design and instantiation of a novel optimistic gateway marking primitive. Beaver
presents a unique design point by tightly integrating the protocol with the regularities of data center
networks. Our evaluation demonstrates that Beaver not only can capture partial snapshots at high
speed, but it also incurs near-zero costs to existing service traffic.
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CHAPTER 5

CONCLUSION

Waste is a tax on the whole people.

Albert W. Atwood

This dissertation characterizes zero-waste designs (§1.2 and §1.3) and presents three instantiations
for control and monitoring functions (Chapter 2, 3, and 4) that play a crucial role in supporting
user applications: (1) Beaver, which reduces additional overhead from the outset when extending
network management capabilities; (2) OrbWeaver, which reuses idle Ethernet cycles that would
otherwise go wasted for high-resolution in-band control protocols; and (3) Mantis, which recycles
and couples underutilized on-board CPU cores and the PCIe channel for localized, sub-RTT reactive
transactions. Central to our approach is the harvesting of in-network waste, enabling us to sidestep
the traditional trade-off between performance and cost. These designs demonstrate that it is possible
to integrate these functions at near-zero cost while maintaining their efficacy.

The dissertation research also includes other collaborative efforts on zero-waste designs. Examples
of works already published (listed in §1.4): (a) InvisiFlow extends OrbWeaver’s capability to dy-
namically identify and reuse idle capacity in the whole network, thereby minimizing both the loss
rate of telemetry data and overheads on user traffic; (b) Cebinae simplifies existing mechanisms
to mitigate unfairness in public networks for a scalable design compatible with a diverse range of
end-host transport protocols; (c) PrintQueue minimizes the SRAM resources with novel data-plane
data structures to accurately track the provenance of packet-level delays for diagnosing performance
anomalies; and (d) Cowbird exploits in-network resources such as SmartNICs, spot VMs, and pro-
grammable switches to offload the control of all network communication, thereby saving compute
nodes’ CPU tax overheads for application threads in the memory disaggregation paradigm.

In the broader context, the impetus for this thesis is twofold: the relentless increase in application
demands, and the technology scaling slowdowns characterized by the plateauing of Moore’s law
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and Dennard scaling. Propelled by these factors, coupled with the pressing environmental concerns
related to energy consumption and carbon emissions in our industry19, this thesis envisions zero-
waste networked systems, where we adhere to zero-waste designs (§1.2) to maximize the utility of
the resulting network from high-efficiency designs. More broadly, we advocate for addressing the
grand challenge of pushing waste in our computing infrastructure to their limits.

Before concluding, we summarize the lessons learned from practicing zero-waste designs (§5.1) and
outline a series of open questions to further this endeavor (§5.2).

5.1. Lessons Learned

This section shares the insights learned from exploring zero-waste designs.

Wastes in networked systems take many forms. Wastes can manifest in various forms across
spatial network components and time scales. For instance, in OrbWeaver, idle cycles appear not only
in familiar diurnal patterns but also in microsecond granularities. One crucial lesson is to constantly
seek out and identify waste. Often, what is overlooked becomes a design blind spot, and harnessing
it can reveal the sweet spot in the trade-offs between performance and costs. In fact, upcycling
waste not only has practical utility but also facilitates cost-effective solutions, as demonstrated in
the Mantis case, which enabled the fast deployment of its agent in large-scale production networks
(§1.3).

Waste is often abundant and its absence can be also informative. One surprising finding is
that, while periods of no idle resources do occur, such conditions are rare when considering both
time and space dimensions, as shown in InvisiFlow. Even so, the absence of idle resources itself
provides concrete information, such as indicating congestion for idle Ethernet cycles. Moreover,
even for background functions requiring strict service level objectives (SLOs), these resources can
be utilized opportunistically under common conditions, combined with practices such as resource
priority escalation for worst-case scenarios.
19Annual ICT energy demand is projected to exceed 100 exajoules over the next decade, reaching approximately 15%

of global energy production, with electricity use growing faster than renewable energy capacity [79, 116].
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Zero-waste designs have wide conceptual extensions20. Zero-waste designs go beyond practices
such as reusing underutilized resources and should be tailored to specific system requirements and
constraints. For instance, sometimes it can be more beneficial to trim the waste itself, e.g., by
reducing power consumption using power-saving techniques or offloading tasks to more efficient
hardware. Incorporating waste reduction considerations early in the design process is also valuable,
as demonstrated in Beaver, which reduces the need for server hardware procurement. More broadly,
the concept of zero-waste encompasses a wider range of practices beyond the three-Rs presented,
such as the five-Rs in the waste management hierarchy and more.

In addition, the applications of zero-waste designs extend beyond control andmonitoring tasks. Aux-
iliary tasks associated with application requests also add to processing overheads, as in the Cowbird
case, because they often fall outside user or application concerns. Pushing these ‘taxes’ toward their
lower bounds, possibly engaging idle channels while preserving performance, is thus beneficial.

5.2. Future Directions

With the relentless increase in application demands, technology scaling slowdowns, and growing
environmental constraints, it is particularly crucial to explore methods to push toward systems with
minimal waste. We highlight several directions to improve the visibility of waste, innovate design
practices, and address practical implications toward the vision.

Augmenting the visibility into ‘wastes’ from their cradle to their grave. To minimize waste, we
need a comprehensive understanding of their patterns to gauge the distance to the ideal and evaluate
the efficacy of a design. Current ad-hoc measurements provide a glimpse, but a holistic, granular,
and synchronous view is lacking. This is particularly pertinent in today’s heterogeneous networked
systems, where resource use is multi-dimensional. A clearer perspective would help us understand
the interplay among diverse resources such as compute, storage, and networking, especially with
network speeds reaching the terabit scale.

Additionally, today’s evaluation of computing systems often focuses on their performance, with en-
20The set of objects satisfying the properties (intension) connoted by the concept.
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ergy use or environmental impact receiving less attention. With a growing emphasis on reducing
carbon footprints, it is crucial to develop methods for complexity analysis and carbon attribution
in multi-tenant environments. This would guide informed and environmentally responsible design
decisions.

Exploring designs to minimize waste for the emerging workloads and contexts. While this
dissertation focuses on zero-waste designs, minimizing waste for emerging applications remains
a problem. Traditional layering principles, while effective in separating developer concerns, can
introduce inefficiencies by imposing fewer assumptions about the specifics of the underlying compo-
nents. Thus, it is appealing to simplify current system stacks, adhering to Occam’s Razor principles.
Emerging elephant workloads, such as machine learning, present not only an opportunity to cus-
tomize these stacks but also a dire need to reduce their footprint, as the exponential growth in ML
resource demand outpaces the growth in total resource capacity, such as power. Similar practices
also have great potential for microservices, where the curse of generality has also been noted for
their sidecars. A question is what does a clean-slate, ‘post-layering’ architecture—that reduces the
system stack footprint while maintaining functional modularity—look like?

The notable trend of faster networking speeds makes data movement to interconnected devices
cheaper and enables new paradigms such as memory disaggregation. Exploring new practices, such
as process migrations, is also promising. Moreover, while our focus has been on core data center
networking, emerging edge clouds also present vast opportunities, as user traffic patterns in these
environments are less predictable and more difficult to multiplex.

Navigating through real-world implications of zero-waste designs. Zero-waste designs bridge
the gap by minimizing residual waste from applications. However, operating at full utilization can
imply potential unexpected behaviors, such as those caused by increased heat generation or hard-
ware bugs rarely encountered today. For example, adaptive cooling systems can fail, resulting in
thermal throttling and degraded performance. Although modern processors and switching devices
provide sufficient thermal margins, increased utilization increases the risk of violations. Additionally,
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security concerns, such as attacks on cooling systems, must be considered, even though they are or-
thogonal to utilization. These reliability considerations are crucial when pushing toward zero-waste
systems.

Another implication of zero-waste designs is to extend the lifespan of devices when considering
embodied carbon, an increasing contributor to carbon emissions in the industry. Such an empha-
sis of embodied carbon can change the inflection point of trade-off decisions; for example, simply
discarding old components becomes more wasteful—since the embodied carbon arises from the
manufacturing process, these costs remain even if the devices are left idle. Consequently, it becomes
important to handle more heterogeneous hardware, which introduces challenges such as increased
failure rates when devices are kept in use longer than they are today.

122



APPENDIX A

ORBWEAVER

A.1. Applications of OrbWeaver

Table A.1 surveys 11 applications that can benefit from an OrbWeaver implementation, belonging
to four distinct classes. We describe several implementations in Section 2.4. All applications can be
expressed as OrbWeaver P4 programs with the basic architecture shown in Figure 2.8.

Across all applications, we find that there are two overarching benefits to an OrbWeaver implemen-
tation:

1. OrbWeaver’s weaved stream allows data plane applications to infer information about network
conditions, such as the presence of congestion or failures in an upstream path.

2. OrbWeaver’s IDLE packet abstraction lets data plane applications disseminate information with-
out consuming user bandwidth. IDLE packets are useful for data transfer between directly
connected switches (e.g., to synchronize the context tables of a switch-to-switch packet-header
compressor [174]) or across the wider network (e.g., to disseminate information about network
faults [129], congestion [204], or even user query metrics [143]).

We note that our focus of these applications and this paper is in-network communication. However,
end hosts may also be able to benefit from OrbWeaver, e.g., by examining the output of the weaved
stream coming from host-facing ports of ToR switches. Efficient end-host generation of a weaved
stream may also be possible, but we leave a full exploration to future work.

A.1.1. Balancing Multiple Applications

IDLE packets are generated and weaved entirely by the OrbWeaver framework. Applications only
embed information and extract it in the receiver. IDLE packets can carry the information of multiple
applications. For example, a time synchronization application that needs 12B to carry 4 timestamps
can co-exist with a failure detection protocol that needs 48B. In this paper, we assume minimum-
sized packets but, in principle, IDLE packets can be MTU-sized with the only effect being a propor-
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tionally increased worst-case packet delay. Of course, there are fundamentally a limited number of
bytes in each IDLE packet; OrbWeaver leaves the decision on how to allocate these bytes to network
architects and operators.
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Application Class System Weaved
Inference?

IDLE
Messaging? Description

Traffic
Engineering

Flowlet load balancing [105, 36] Section 2.4.3.
Performance-aware routing [89] Propagate route updates in customizable distance-vector routing

algorithms using IDLE packets.
Micro-burst detection [204] Detect micro-bursts fromweaved stream, provide feedback to up-

stream switches with IDLE packets.

Fault
Tolerance

Fast failure recovery [207] Detect failures (Section 2.4.1), alert upstream switches with
IDLE packets for fast data-plane mitigation [54].

Consistent replicas [110, 199] Synchronize eventually-consistent distributed state, e.g., for dis-
tributed firewalls, with IDLE packets.

Monitoring

Packet forensics [81] Transfer packet postcards in IDLE packets to reduce overhead of
packet history tracking.

Network queries [143, 77] Support queries over both flow and weaved stream statistics, ex-
port query results in IDLE packets.

Latency localization [76] Measure latency in network core using weaved stream, dissemi-
nate measurements with IDLE packets.

Network
Services

Clock synchronization [103] Section 2.4.2.
Header compression [174, 92] Synchronize state of point-to-point packet header compressors

with IDLE packets.
Event-based network control [172] Carry network control events in IDLE packets.

Table A.1: OrbWeaver use cases. A diverse range of data-plane applications can use OrbWeaver’s weaved stream to learn about
conditions in the network and/or communicate via IDLE packets that consume no data-packet bandwidth.
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A.1.2. Preventing Starvation

The primary goal of the paper is to explore the opportunistic use of IDLE cycles for in-network
coordination. Because of our opportunistic approach, there may be cases where IDLE packets get
starved by user packets; however, as previously noted, two factors mitigate the issue:

• The lack of IDLE packets itself reveals concrete information of the network condition (per R1
guarantee of the weaved stream predictability).

• Prior works observed that persistent user traffic is rare, instead, IDLE cycles (every 10s or 100s of
µs) are ubiquitous.

A wide range of applications can be implemented with only opportunistic communication. Of course,
some applications may need additional guarantees, e.g., applications requiring a strict, real-time
guarantee w.r.t. minimum rate (i.e., maximum inter-IDLE-packet gap); or applications that need
more aggregate bandwidth than the weaved stream can guarantee in a timely fashion.

In these cases, networks can apply a priority escalation mechanism by adding a single register of
N (number of ports) slots and check the elapsed time since last seen IDLE packet. Applications can
seamlessly escalate the priority of IDLE packets when too much time passes (per the applications’
guaranteed rate SLO). In these situations, OrbWeaver still eliminates nearly all overhead in the
presence of (micro)bursts, but may impose a fixed overhead during extended periods of congestion.

A.2. Generalization to Other Platforms

Our focus in this paper was on the Tofino family of programmable switches. While a detailed taxon-
omy and analysis of every programmable platform is out of the scope of this paper, there is reason to
believe that other programmable platforms have similar features or can emulate the features needed
to implement OrbWeaver.

In particular, OrbWeaver leverages three hardware features of Tofino switches: (1) packet genera-
tion, (2) multicast, and (3) packet prioritization. Among these, support for the latter two can be
found in almost every modern forwarding device that is designed to handle the Ethernet protocol.
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Support for onboard packet generation is not as universal; however, one potential solution is to
connect a port on each switch to a simple device/CPU responsible for generating regular, periodic
packets. Of course, a CPU, even with real-time scheduling optimizations, may not be as dependable
as the Tofino packet generator. This may necessitate additional tolerances.

Finally, our conversations with switch vendors indicate that OrbWeaver’s mechanisms will scale to
future switches with both increased bandwidth and port counts. Part of this is due to the fact that
most of OrbWeaver’s components scale with the clock rate of the switch and/or are independent
to each pipeline. The notable exception is packet generation; however, we note that OrbWeaver
currently has more than an order of magnitude of headroom (Section 2.3.2.1). If MTU transmis-
sion time does eventually outpace packet generation latency, OrbWeaver’s properties will degrade
gracefully.

A.3. Energy-Efficient Ethernet (EEE)

The Ethernet standard contains an optional EEE mechanism [173], which allows switches to tran-
sition links into a Low-Power Idle (LPI) mode when there is no data to send.

OrbWeaver may be able provide compatibility by turning off the IDLE stream on a per-port, per-
direction basis if there is no user traffic during the past S seconds. Each packet flowing between
two OrbWeaver switches would then need a single bit reserved as an ‘LPI’ indicator. Upon receiving
an IDLE packet with the ‘LPI’ indicator set, a receiver will change its expectation from requiring a
packet every τi seconds to requiring one every τ ′

i seconds (τ ′
i ≫ τi). The very first user packet after

the low-power idle mode will be sent with the ‘LPI’ indicator unset. Loss can be addressed by again
emulating EEE and sending several indicator packets in a row.

Enabling this feature may impact the responsiveness of OrbWeaver applications, but we note that all
of the use cases studied can make do with less frequent but still regular coordination. OrbWeaver
may be able to synchronize these low-power updates with existing synchronization-maintenance
events in the PHY.
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A.4. Proof of Priority-effect on User Traffic

Theorem. For an arbitrary user packet size distribution and arrival process, with strict priority
scheduling and a measurement time window T ≫ ∆t (∆t denotes transmission time of a single
IDLE packet), the throughput of the user traffic is unaffected by the IDLE stream.

Proof. Consider a packet sequence p1, . . . , pn with size∆t1, . . . , ∆tn and original schedule t1, . . . , tn,
denote the new schedule upon the coexistence of IDLE stream as t′

1, . . . , t′
n.

We first prove ∀i ∈ [1, n−1], t′
i ≤ (ti +∆t)→ t′

i+1 ≤ (ti+1 +∆t). The case for preemptive scheduling
is trivially true. We focus on the case of non-preemptive scheduling.

Base case with p1: the worst case delay of the transmission is when right at t1, an IDLE packet is
scheduled to transmit and with strict priority p1 is scheduled right next to it. Hence t′

1 ≤ (t1 + ∆t).

For the inductive step, given the new schedule of pi satisfying t′
i ≤ (ti + ∆t), we need to show that

t′
i+1 ≤ (ti+1 + ∆t). There are three cases for the next packet pi+1:

• ti+1 > (ti + ∆ti + ∆t): at ti+1, the previous packet has finished transmission in the new schedule
since ti+1 > (ti + ∆ti + ∆t) ≥ t′

i + ∆ti. The worst case delay is when IDLE packet is scheduled
right at ti+1 and the transmission is delayed by ∆t, i.e., t′

i+1 ≤ (ti+1 + ∆t) holds.

• t′
i + ∆ti ≤ ti+1 ≤ (ti + ∆ti + ∆t): at ti+1, pi finishes transmitting in the new schedule, similar
to the previous case, the worst case is ∆t when right at ti+1, IDLE packet gets scheduled, hence
t′
i+1 ≤ (ti+1 + ∆t) holds.

• ti + ∆ti ≤ ti+1 < t′
i + ∆ti: pi+1 has been queued since pi is still transmitting until t′

i + ∆ti in the
new schedule. With strict priority, pi+1 will start transmission right at t′

i + ∆ti ignoring the IDLE
packet. Hence, t′

i+1 = t′
i + ∆ti ≤ ti + ∆t + ∆ti ≤ (ti+1 + ∆t).

By induction, we have t′
n ≤ (tn + ∆t), that is, the latency impact is tightly bounded by ∆t for an

arbitrary user packet and won’t accumulate across packets. Given such fixed workload, consider
the impact of the IDLE stream over the original transmission time T = tn + ∆tn − t1. For the new
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Configuration SRAM TCAM Metadata Tbls Regs

16×100Gbps 80KB 1.28KB 85 b 3 1
32×25Gbps 80KB 1.28KB 53 b 3 1

Table A.2: Additional data plane resources for OrbWeaver’s weaved stream generation over an L2
forwarding switch. Ports are binned into groups of 2 and 4, and only 256 multicast groups reserved.

transmission time window [t′
1, t′

n+∆tn], the duration T ′ = t′
n+∆tn−t′

1 ≤ max(t′
n)+∆tn−min(t′

1) ≤

tn + ∆t + ∆tn − t1. Hence, T ′ − T ≤ ∆t. Since T ≫ ∆t, the throughput of the high priority user
packet stream is not impacted.

A.5. Probability of Notification in Use Case #1

We can formally express the probability that a notification is sent before the flow is evicted. Consider
the case where there is a drop in flow f and user packets are all MTU-sized, i.e., there is one packet
per period, τ . Assume that the flow cache holds N records and 3 can be packed in each IDLE.

P (notified) = P (IDLE contains f)
P (IDLE contains f)+ P (new f ′ replaces f)

=
3
N P (IDLE)

3
N P (IDLE) + 1

N (1− P (IDLE))P (new flow)

= P (IDLE)
P (IDLE) + (1− P (IDLE))P (new flow)/3

whereP (IDLE) is the probability that an IDLE packet was sent during a given period τ , andP (new flow)

is the probability that a user packet’s flow cannot be found in the cache. Smaller packets multiply
the second term in the denominator; a larger N decreases it by improving cache hit rates. The prob-
ability that a flow record is evicted before it is sent (i.e., that we miss the loss) is 1 less the above
value.

A.6. OrbWeaver Data Plane Resource Overhead

§2.3 details the overhead of OrbWeaver’s weaved stream generation on user traffic and energy usage.
We note that OrbWeaver also uses data plane resources for IDLE seed packet filtering and replication,
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as shown in Table A.2. For each category, OrbWeaver only occupies a small fraction of the total switch
resources (for instance < 1% of both SRAM and TCAM).
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