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ABSTRACT
When diagnosing performance anomalies, it is often useful to rea-

son about why a packet experienced the queuing that it did. To that

end, we observe that queuing is both a result of historical effects

and the current state of the network. Further, both factors involve

short and long timescales by nature. Existing work fails to provide

insight that satisfies all of these needs.

This paper presents PrintQueue, a practical data-plane monitor-

ing system for tracking the provenance of packet-level delays at

both small and large timescales. We propose a set of metrics for de-

scribing ‘congestion regimes’ and present a set of novel data-plane

data structures that accurately track those metrics over arbitrary

time spans. We implement PrintQueue on a Tofino switch and eval-

uate it with multiple network traces. Our evaluation shows that the

accuracy of PrintQueue is up to 3× times higher while the overhead

is 20× times smaller than existing work.
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1 INTRODUCTION
In today’s networks, performance issues can come from many dif-

ferent sources, whether a DoS attack, an ECMP misconfiguration,

TCP incast, or just an unlucky confluence of application flows con-

verging at a single link. Performance issues can also yield different

impacts, e.g., dropped packets, SLA violations, or a degraded user

experience. However, almost all performance issues boil down to a

packet getting to its destination late or not at all.

As a result, visibility into a network’s queues is critical for diag-

nosing performance issues and answering questions such as: which

other flows caused this packet to sit in this particular queue? Unlike
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other possible sources of delay like routing issues or failures, queues

are simultaneously hard to predict (because of non-deterministic

packet arrival timing) and hard to reason about after the fact (due

to the high volume of traffic involved). What is more, the original

causes of the delays can span arbitrary time scales. For shorter

time scales, prior work has found that, in some large networks,

microbursts as brief as 10s to 100s of microseconds are the norm,

not the exception [35]. For longer time scales, differentiated classes

of service, mechanisms like Layer-2 pause frames, and the cascad-

ing nature of queuing delays mean that the original causes of a

delay can be far in the past. In fact, in the extreme case where a

low-priority packet 𝑝 is continuously delayed by higher priority

traffic, the set of flows that caused 𝑝’s delay is unbounded.

Existing work in flow measurement tends to perform poorly at

the extreme timescales needed by queue diagnosis. For example,

approaches like sketch-based heavy-hitter analysis [12, 14–17, 23–

26, 34] typically operate over fixed windows of time. If a packet

enters and exits the queue on these fixed window boundaries, the

above class of systems can track concurrent flows precisely. If the

packet does not, especially if it only spends a short time in the queue,

then fixed-window approaches can grossly overestimate the pres-

ence, size, and impact of other flows. Packet-sampling approaches

[10, 13, 18, 25, 37] suffer from similar issues, either necessitating

heavy sampling or failing to scale to longer periods of congestion.

Work in queue monitoring is slightly more relevant but still lacks

sufficient information to attribute delay precisely. For example, Con-

quest [6] is able to query whether a flow is a primary contributor

to the current queue whenever the flow’s packets enqueue. Un-

fortunately, it does not permit the reverse lookup: given a victim,

determine the culprits in its queuing.

In this work, we argue that when trying to determine the causes

of per-switch queuing delay, we must consider the current con-

gestion regime holistically. For example, in a microburst, the early

packets in the burst are, in some ways, just as culpable as the packet

immediately prior to the victim—if either did not exist, the victim

would be sent sooner. To that end, we present a taxonomy of the

low-level causes of per-packet queuing delay. Our taxonomy con-

sists of three types of culprits: packets that directly delay a victim

packet, packets in the current congestion regime that indirectly
delay the victim, and the original causes of the current congestion
regime. Together, these categories paint a picture of the current

period of congestion in its entirety: the first one captures the cur-

rent causes of the network’s congestion, and the last two capture

its historical roots.

This paper presents PrintQueue, a monitoring framework that

tracks the causes of queuing delays across an entire congestion

regime. PrintQueue leverages the flexibility of modern programma-

ble switch data/control planes to implement two novel mechanisms
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that, combined, track each of the causes of delay outlined above.

The mechanisms are designed for the specific challenges of each

effect. When tracking flows that directly or indirectly impact a vic-

tim packet, PrintQueue effectively handles both nanosecond-level

queuing and super-BDP impacts using a hierarchical, probabilistic

flow-tracking data structure. When tracking the historical roots of

congestion, PrintQueue efficiently handles the unbounded nature

of the congestion regimes by formulating a simple summarization

scheme that can implicate culprits at a packet-level granularity.

We implement PrintQueue on a Tofino switch and evaluate it

with multiple network traces. More specifically, this paper makes

the following contributions:

• We propose a set of metrics for describing a congestion regime.

We classify the entire collection of responsible packets into

three groups, i.e., direct, indirect, and original culprits.We show

the necessity to track each group with real-world examples.

• We present PrintQueue, the first system to efficiently track an

entire congestion regime. We design novel data structures, i.e.,

time windows and the queue monitor, for this purpose. The

data structures are compatible with non-FIFO queuing policies.

• We validate PrintQueue with a hardware prototype. Our eval-

uation shows the accuracy of PrintQueue is up to 3× times

higher than existing work while keeping the overhead 20×
times smaller.

This work does not raise any ethical issues.

2 DESCRIBING A CONGESTION REGIME
Modern networks operate on increasingly tight deadlines. Both

users and massively distributed computations expect and rely on

low latency. For these networks, queuing can have a major im-

pact on tail latency. Fundamentally, queuing delay is caused by

congestion and its resulting queue buildups. In modern networks,

these buildups tend to happen in waves. For example, consider

microbursts, short-lived periods of high utilization that typically

last for less than a millisecond and cause the majority of congestion

in some data center networks [35].

In a microburst, the delivery of a packet 𝑝 is based on the send

time of the previous packet 𝑝1, denoted as 𝑝 ← 𝑝1. However, the

victim 𝑝 ’s delay is not just the previous packet 𝑝1’s fault. 𝑝1’s send

time is decided by its previous packet 𝑝2, i.e., 𝑝1 ← 𝑝2. Similarly,

𝑝2 ← 𝑝3, and so on. In each case, eliminating the other packets

would have led to an earlier send time for 𝑝 , and thus, they con-

tributed to 𝑝’s delay. So the culprits for 𝑝’s delay are the packets that

directly or indirectly point to 𝑝 (← 𝑝1 ← 𝑝2 ← 𝑝3 · · · ). This chain
of blame can extend all the way to the beginning of the microburst.

Notably, one cannot assign blame to any packet from before the

start of the microburst.

In this work, we argue that when trying to attribute the cause

of a delay, one must consider the entire congestion regime, i.e.,

the period extending from when the victim packet finally leaves

the queue back to when the queuing first began. More formally,

consider a queue with an arbitrary packet scheduling algorithm

and the burst of packets depicted in Figure 1. All packets depicted

are at least partially culpable in the victim’s queuing delay, not just

those in the queue when the victim arrives at 𝑡 = 4.

Queue

0

1

2

3

4

5

𝑡

direct indirect

originaloriginal

6

Figure 1: The congestion regime of a single burst of packets.
The red square represents a lower-priority victim packet; all
other packets are higher priority. The white packets increase
the queue depth to 2 and sustain the level. The grey packets
also impact the victim because of their high priority.

We further argue that we can comprehensively categorized these

packet-level causes of queuing delay into three groups:

Packets that directly delay the victim. For a victim packet that

is enqueued at 𝑡1 and is dequeued at 𝑡2, the packets that directly

contribute to the delay of 𝑡2 are precisely those that were dequeued

between 𝑡1 and 𝑡2. This definition is independent of the packet

scheduling algorithm. In Figure 1, directly culpable packets are

marked in grey. In essence, the switch chooses to deliver these grey

packets instead of the victim.

Identifying direct culprits is essential to diagnosing many real

performance issues. For example, knowing the makeup of these

flows can reveal which flows are competing with the victim flow

and, e.g., whether those flows are just a few heavy hitters or a

collection of smaller higher-priority requests.

Packets that indirectly delay the victim. Using the same sce-

nario, packets that indirectly impact the victim are those that do

not directly delay the victim but may have (indirectly) caused the

queuing of a packet that did. More precisely, these are packets

whose dequeue time, 𝑡 ′
2
is before the victim’s enqueue time, 𝑡1, and

where the queue depth is greater than zero for the entire period

[𝑡 ′
2
, 𝑡1]. The union of direct and indirect culprits equals the complete

congestion regime.

Identifying indirectly culpable packets is also important. For

instance, in the case of TCP incast or otherwise synchronized traffic

patterns [30], these congestion regimes are characterized by the

entire burst containing a single application’s traffic. In the light of

that, knowing indirect culprits can help identify the synchronized

behavior and the fact that there is sufficient capacity surrounding

the burst, which can be utilized by de-synchronizing the sends.

Packets that are the original causes of the congestion. Finally,
out of the indirectly culpable packets, a subset of packets have

slightly more blame—the packets that brought the queue to its

current level. Specifically, for a queue depth of 𝑛 packets, there are
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at least 𝑛 packets whose arrival increased the depth of the queue.

In Figure 1, these are the packets that enqueue during 𝑡 = [0, 1].
Identifying these historical causes of queue buildup can also

be essential to differentiate specific types of behavior. Consider a

scenario where several large TCP WAN connections are sharing a

link but properly managing the queue. If a sudden burst of UDP

datagrams arrives, the queue will quickly balloon and stay high

before TCP has time to react. For a subsequent victim packet, the

direct culprits will not contain the burst—it has long since left

the network. The indirect culprits will also be misleading—the

majority (by volume) are the other TCP flows. The queue buildup

will properly implicate the datagram burst.

3 DESIGN OVERVIEW
For a victim packet, PrintQueue identifies each of the above types of

culprit packets. It further aggregates the culprits according to their

flow ID to get per-flow packet counts. The packet counts serve

as a measure of the flows’ contribution to the victim’s queuing

delay and a guide for the network operator’s subsequent actions.

Specifically, PrintQueue identifies each culprit flow with its:

• Flow ID, expressed as 5-Tuple (i.e., source and destination IP

addresses, ports, and protocol ID).

• Contribution, expressed as the total number of culprit packets.

Three key ideas underlie PrintQueue’s design.

(1) To accurately track culprits at fine-granularity, PrintQueue should
store individual packets and their dequeue times: For both direct and

indirect culprits, their definition and discernment rely on their de-

queue timestamps and their relation to the victim packets’ queuing

time. PrintQueue designs a data structure that enables networks

and operators to query an arbitrary time range (small or large) for

queuing-delay culprits. This query interval may correspond to the

total queuing time of a victim packet or the period of a single burst.

As the query interval is arbitrary, PrintQueue can serve as a gen-

eral framework for higher-level queue diagnosis tasks. For example,

operators can trigger a query when they receive a customer com-

plaint about high delays. Alternatively, the egress pipeline in the

data plane can automatically trigger a local query when it detects

high queuing for important traffic.

(2) To ensure scalability to unbounded time scales, PrintQueue must
compress packets to reduce overhead: While (1) provides the ability

to query for culprit packets at fine granularity after-the-fact, its

storage requirements are intractable. PrintQueue instead seeks to

store packets belonging to exponentially-growing periods in only

linearly-growing space. The data structure we propose is a time

window.

While time windows necessarily sacrifice accuracy, PrintQueue

leverages a hierarchical approach to create tiers of tracking ac-

curacy that are ordered by recency. In fact, for the most recent

‘time window,’ every packet is tracked precisely. As the packet ages,

PrintQueue compresses it into successively more approximated

structures that mirror packets to increasingly long intervals. Fig-

ure 2(b) depicts this process and compares it to the more linear

approach taken by existing work.

(3) To prioritize tracking of the original causes of congestion and do so
efficiently, PrintQueue should maintain a distinct list of packet-level

time

space space space

packets

1 1 1           1           1           1           1 

spacespacespacespace

packetspacketspacketspacketspacketspackets

(a) Linear

time

space space space

packetspacketspackets

1                2                                     4

(b) Exponential (PrintQueue)

Figure 2: The linear storage of most existing work versus
the exponential storage approach of PrintQueue’s time win-
dowsmechanism. In PrintQueue, themost recent time period
(darkest) stores packets in full fidelity. Note that PrintQueue’s
space advantages hold even if the linear storage is not full
fidelity (but is still proportional), e.g., in the case of a sketch.

Analysis Program

Ingress Pipeline Egress Pipeline

Programmable Switch ASIC

Periodical Polling

Forward
Port 

Configuration

Data Path

Asynchronous Query

Queuing

Switch Local CPU

Data-plane Query

Register 

Records

Traffic 

Manager

Time Windows

Queue Monitor

Figure 3: The per-switch PrintQueue architecture. Print-
Queue is activated in specific ports by port configuration.
It tracks culprits with time windows and the queue monitor,
which are periodically checkpointed by the control plane.
Queries can be initiated either remotely (via an asynchro-
nous request) or locally (in the egress pipeline).

‘high-water’ marks: Finally, to find the original culprits, PrintQueue

reserves a unique data structure that stores packets causing queue

growth and evicts packets as the queue drains. The insertion and

eviction of packets track queue variations precisely. The data struc-

ture, queue monitor, explains which packets in history brought the

queue depth to its current level.

Architecture. As illustrated in Figure 3, modern switches are split

into ingress and egress packet processing pipelines, with the switch

buffer placed between the two. While different ports may share

buffer space or the same physical pipeline, queuing delay is almost

entirely a function of the activity on each independent egress port.

Network operators first enable PrintQueue on a per-egress-port

basis. On those ports, PrintQueue tracks culprits with two data-

plane components: time windows (for tracking both direct and
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Metadata Description

egress_spec The output port where a packet is forwarded.

enq_timestamp The timestamp when a packet enqueues.

deq_timedelta The time that a packet spends in the queue.

enq_qdepth The queue depth when a packet enqueues.

Table 1: Metadata required by PrintQueue.

indirect culprits) and the queue monitor (for tracking the original

causes of congestion).

In the control plane, the analysis program periodically polls and

stores the contents of the time windows and queue monitor. Finally,

higher-layer applications query the culprits either by sending a

request to the analysis program or initiating a synchronous query

in the data-plane egress pipeline. The advantage of the latter is that

it can query the time windows before they age the directly culpable

packets into a less accurate window.

Metadata requirements. PrintQueue uses the metadata fields in

Table 1. This information is provided by both Tofino chip [2] and

BMv2 Simple Switch target [1]. The flow ID can be derived directly

from packet header contents.

We describe PrintQueue’s components in detail below.

4 TIMEWINDOWS
Time windows are a hierarchical and probabilistic data structure

whose purpose is to answer queries of the form: for a given egress

port and query interval, which flows are occupying the port, and

how many packets do they contribute?

4.1 Physical Layout
Figure 4 depicts a set of 𝑇 time windows (indexed from 0 to 𝑇 − 1).
Each time window is implemented with a stateful register array

consisting of 2
𝑘 cells. Cells are the smallest building block of a time

window and always hold the information of just a single packet.

The entire set of 𝑇 time windows covers a fixed, contiguous

timespan, called the set period. Each time window also covers a

contiguous subset of the set period called a window period. Dif-
ferent time windows may cover differently sized window periods.

Similarly, each cell covers a contiguous subset of a window period

called a cell period. Like window periods, cell periods can also differ

in size, although all cells in a single time window will have the same

cell period. In this way, every point in time within the set period

can be attributed to precisely one time window and cell, although

a cell and its single packet’s worth of information can represent a

relatively large span of time (see Section 4.3 for why that is okay).

A key feature of time windows is that each successive window

period (and, thus, their cell periods) is exponentially larger than

the last. As hinted in Figure 2, if the length of window period 0

is 1 unit, the length of window period 𝑖 is 2𝛼𝑖 units, where 𝛼 is a

configurable compression parameter.

In each time window, the cell array functions as a ring buffer.

As time passes, PrintQueue continually writes packet information

into the time windows, evicting and overwriting the oldest cells of

each. Writing begins at cell 0 and proceeds to cell 2
𝑘 − 1 before it

loops back to 0. To handle ring-buffer overflows, each cell stores a

monotonically increasing Cycle ID to distinguish cell periods from

t

refresh 

Time window 0 1 𝑇 − 1

pass
2𝑘cells

drop

packet

…

drop

pass pass

drop
drop

Cell

Flow ID

Cycle ID

A set of time windows

…
wp:1 wp:2𝛼 window period: 2𝛼(𝑇−1)

set period

cell period

Figure 4: The physical layout of a set of 𝑻 time windows.
The bottom of the figure illustrates the timeline of packets
passing through this set of time windows and the relevant
granularities of time in PrintQueue.

32-bit timestamp – 0xAAA9105A

13bits 12bits

Trimmed Timestamp (TTS)

Cycle ID Index

1010101010101 001000100000 1011010

Figure 5: An example to calculate cycle ID and index of times-
tamp 0xAAA9105A. The raw bits of the timestamp are shown
in the bottom row.

different cycles. As newer packets evict older ones, PrintQueue

combines the oldest 2
𝛼
cells from time window 𝑖 and stores the

combined value as the newest cell in time window 𝑖+1. This process
occurs recursively, sliding all of the windows as it goes.

To ensure packet-level granularity, PrintQueue sets the cell pe-

riod of time window 0 to a value less than the transmission delay

of a minimum-sized packet in the target network (e.g., 64 B). This

means that in time window 0, there will be no cell-level collisions—

each cell has at most one packet to store every cycle. Time win-

dow 0 typically has thousands of cells, making the window period

more than 100 μs. Note that this means queries for the culprits

in microbursts (lasting for 10s to 100s of microseconds) are often

guaranteed to have full precision and recall. Queries triggered soon

after the incurred delay are similarly advantaged.

4.2 Per-packet Procedure
We now delve deeper into the per-packet procedure and Print-

Queue’s method for retrieving culprits across arbitrary query in-

tervals. PrintQueue begins with the packet’s flow ID and dequeue

timestamp. The dequeue timestamp is computed as (enq_timesta-
mp + deq_timedelta).

Every packet then enters time windows at time window 0. The

cell index in time window 0 is based on the low bits of the dequeue

timestamp. In the beginning, time window 0 is empty, and all pack-

ets are placed directly. Over time, however, PrintQueue may need

to evict older packets. These packets are either dropped or passed

to the next time window as new inputs, with all time windows

repeating the process recursively. The rules for mapping packets to

certain positions in a window and deciding whether to pass packets

to the next time window are as follows.
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Mapping rule. For a given time window, the mapping rule is used

to compute the cell index and cycle ID of the target packet. Both can

be computed from the dequeue timestamp using simple bitshifts.

For the first time window, PrintQueue shifts the timestamp to the

right by𝑚0 = ⌊log2 (min_pkt_tx_delay)⌋ bits to obtain a trimmed

time-stamp (TTS). In today’s switches with nanosecond clocks,

𝑚0 = 6 (64 ns) is typically sufficient. As each time window has

2
𝑘
cells, the 𝑘 least-significant bits of the TTS are used to index

into the appropriate cell, and the remainder of the TTS is stored

as a cycle ID. Figure 5 gives an example of this breakdown for an

example timestamp with𝑚0 = 7, 𝑘 = 12.

Recall that, when evicting, 2
𝛼
cell periods are combined and

passed to the next window. Thus, each subsequent time window

shifts the TTS by an additional 𝛼 bits; again, the lowest 𝑘 bits of new

TTS are the index and the rest are the cycle ID. For example, suppose

𝛼 = 1 and 𝑘 = 12. In window 0, two cells with TTS 0x3fff000 and

0x3fff001 are mapped into the same cell of window 1, whose TTS

is 0x1fff800. Algorithm 1 shows the procedure, in context.

More formally, time window 𝑖 compresses all the packets in a

period of length 2
𝑚0+𝛼𝑖

to a single cell, and a span of 2
𝑚0+𝛼𝑖 × 2𝑘 =

2
𝑚0+𝛼𝑖+𝑘

into a window period. All together, the set period lasts

for a span of

∑𝑇−1
𝑖=0 2

𝑚0+𝛼𝑖+𝑘 = 2
𝛼𝑇 −1
2
𝛼−1 2

𝑚0+𝑘
.

Passing rule.Whenever there is a collision in a cell, PrintQueue

always chooses the newer one. PrintQueue applies a passing rule

to determine the fate of evicted packet record, i.e., whether it is

dropped or carried to the next time window.

Algorithm 1 (lines 6–11) shows the passing rule logic. When a

new packet arrives at a time window, PrintQueue always stores it,

whether the cell is empty or not. If the cycle ID of the new packet

is larger than that of the evicted packet by exactly one, it passes the

evicted packet to the next time window as a new packet. Intuitively,

this means that PrintQueue only has one shot to pass each packet to

the next window—in the next window period immediately following

the packet’s arrival—and it will only pass the packet if it encounters

a packet sharing the same cell index during that window period. It

will not pass competing packets with the same cycle ID and cell

index. Packets that it does not pass will be deleted asynchronously

when another packet arrives in a future cycle.

Thus, deeper time windows correspond to older and larger peri-

ods of time. When a packet is passed into a given time window, it

is guaranteed to be the newest one.

Example. Figure 6 shows a concrete example of both rules in

action. During time step 1, cell 0 and cell 1 of time window 0 are

both passed to cell 0 of time window 1. Flow A’s packet arrives

first, but is evicted when flow B’s packet arrives. Because the two

packets have the same cycle ID, flow A’s packet is directly dropped

instead of being passed to the next time window.

At the end of time step 2, A’s incoming packet in cell 3 evicts

D’s packet in window 0. D’s packet will not be passed, as its cycle
ID is too far in the past.

At the end of time step 3, B’s packet in cell 0 of time window 0

is pushed out by the incoming A packet and passed to cell 0 of time

window 1. Because the cycle ID of the window 1 packet is exactly

one less than the incoming packet’s cycle ID, the window 1 packet

Algorithm 1: Time windows data-plane algorithm

Input: packet p,𝑚0 , windows, 𝑘 , 𝛼 ,𝑇

1 𝑖 = 0 (𝑖 is the time window index)

2 p.TTS = p.dequeue_timestamp >> 𝑚0

3 while 𝑖 < 𝑇 do
4 p.Index = p.TTS & (2𝑘 − 1)
5 p.CycleID = p.TTS >> 𝑘

6 e = windows[𝑖][p.Index]

7 windows[𝑖][p.Index] = p

8 if p.CycleID - e.CycleID == 1 then
9 p = e (pass the evicted packet)

10 else
11 break (drop and stop)

12 p.TTS = p.TTS >> 𝛼

13 𝑖++ (to the next window)

14 end

will be passed to cell 0 of window 2. The newly added packet in

cell 0 of window 1 will be replaced in time step 5.

4.3 Analysis and Proofs
Time windows intentionally drop some packets to better compress

the data. To recover from this loss, they leverage several attributes.

Theorem 1. If the probability of a packet arriving at cell 𝑗 in a

window period is 𝑧 𝑗 , then the probability that no packet is passed
from cell 𝑗 during the next window period is 1 − 𝑧2

𝑗
.

Proof. To pass a packet in the next window period, there must

be two incoming packets in the current and next window period,

respectively. The probability of this occurring is 𝑧2
𝑗
. Otherwise, the

probability of no passing is 1 − 𝑧2
𝑗
. □

If 𝑧 𝑗 is i.i.d., let 𝑧 = 𝑧0 = · · · = 𝑧
2
𝑘−1 and 𝑝 = 1 − 𝑧2.

Theorem 2. If 𝑧 𝑗 is i.i.d. and there are 𝑛 new packets stored in

the cells during the current window period, then:

• During the next window period, the subsequent window is

expected to store ( 1
2
𝛼 𝑧

1−𝑝2
𝛼

1−𝑝 )𝑛 new packets, passed from the

current window.

• Subsequent time window’s 𝑧 𝑗 , the probability that cell 𝑗 stores

a new packet in every window period, is 1 − 𝑝2𝛼 .
• Subsequent time window’s 𝑧 𝑗 is i.i.d.

Proof. For simplicity but without loss of generality, randomly

select one from the new packets that are stored during the current

window period. For it to be stored in the next window period, there

are two requirements. First, the cell must have an incoming packet

during the next window period. The probability is 𝑧. Second, after

the selected packet is passed, no later packets of the same window

period push it out. 2
𝛼
cells, indexed from 0 to 2

𝛼 − 1, of the current
window are mapped to the single cell of the subsequent window.

Assume the selected packet falls into cell𝑚 (0 ≤ 𝑚 ≤ 2
𝛼 − 1). Cells

𝑏 (𝑚 + 1 ≤ 𝑏 ≤ 2
𝛼 − 1) should not pass any packets during the

next period. According to Theorem 1, the probability is 𝑝2
𝛼−1−𝑚

.

Since the selected packet has equal probability to fall into any of

the 2
𝛼
cells, the probability that no competing packets push out

the selected packet is
1

2
𝛼

∑
2
𝛼−1

𝑚=0 𝑝2
𝛼−1−𝑚 = 1

2
𝛼
1−𝑝2

𝛼

1−𝑝 . With two

requirements satisfied simultaneously, the above probability that
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Figure 6: Example of time windows in action; 𝒌 = 2, 𝑻 = 3, 𝜶 = 1. The diagram shows 6 time steps. In each, the incoming packets
are shown on the left; tables with black headings are the time windows. Arrows show packet movements during time steps.

the selected packet is stored in the subsequent window becomes

1

2
𝛼 𝑧

1−𝑝2
𝛼

1−𝑝 . Since we select a packet randomly, the probability is

equivalent for all the new packets of the current window period.

Hence the subsequent window is expected to store ( 1
2
𝛼 𝑧

1−𝑝2
𝛼

1−𝑝 )𝑛
packets.

The packet in each cell of the subsequent window comes from

any of 2
𝛼
cells of the current window. The probability that no cell

passes packets is 𝑝2
𝛼
. Otherwise, the probability that a cell in the

subsequent window stores a new packet is 1 − 𝑝2𝛼 .
The above proof applies to all cells in the subsequent window

so the subsequent window’s 𝑧 𝑗 is i.i.d. □

PrintQueue uses the proportional property of Theorem 2 to

recover the original packet counts from the compressed data. In

the beginning, a flow with 𝑛 packets is stored in the current time

window. As time goes by, the current window stores new packets,

dropping some of the 𝑛 packets and passing the rest. In the subse-

quent window, the packet count of the flow is compressed as we

can only observe some of the 𝑛 packets. Theorem 2 says that the

observed number is proportional to the original number 𝑛 in the

preceding time window. We can easily recover the original number

by dividing the observed number by the ratio
1

2
𝛼 𝑧

1−𝑝2
𝛼

1−𝑝 .

Theorem 2 also shows that from the first time window, the pro-

portional property extends to all the time windows, each with new

𝑧, 𝑝 calculated from preceding windows’. We recover the packet

number all the way back to the first time window by repeating

the process: divide the number by the ratio between neighbor time

windows. Recall that the first time window tracks packets precisely.

Therefore, the estimated packet count in the first window is our

target value.

PrintQueue introduces coefficient to simplify the recovery pro-

cess. PrintQueue first computes the ratio between neighbor win-

dows. Then, PrintQueue defines coefficient[𝑖] as the ratio of packet

count in window 𝑖 to the packet count in the first window. Appar-

ently, coefficient[0] is 1. For deeper windows, multiply the ratios

recursively to get coefficient[𝑖] as shown in Algorithm 2. Finally,

if we observe a flow with 𝑛 packets in window 𝑖 , the flow’s real

packet number in that period is expected to be 𝑛 / coefficient[𝑖].

The proportional property only provides an expected value with-

out any error bounds. Ideally, if the packets of all the flows fall

randomly into every 2
𝛼
cells, the errors are minimal, because there

is no bias on passing specific flows’ packets. The errors still exist,

because for extremely small flows, none of their packets will survive

when traversing through windows multiple times. In practice, after

queuing, packets enter time windows not in the ideal way, but near

randomly. Before packets causing a congestion get enqueued, each

one is likely to experience small random delays when traversing

network ends, links, and switches. So packets of different flows are

slightly randomized in the queue, making near-random entry into

time windows in the egress pipeline. We show in Section 7 that

under different workloads the errors are limited.

Next, we need a concrete value of 𝑧 in the first window to

apply Theorem 2 to all the time windows. Theorem 3 describes the

necessary assumptions to get the value and proves their sufficiency.

Suppose the transmission delay of minimal-sized packets at line rate

is 𝑑 . The length of cell periods in time window 0 is 2
𝑚0

. 2
𝑚0 ≤ 𝑑 .

Theorem 3. If the port of switch forwards packets at line rate

and the number of cells, 2
𝑘
, is large, then:

• The first window’s 𝑧 𝑗 , the probability of cell 𝑗 storing a new

packet during every window period, is
2
𝑚

0

𝑑
.

• The first window’s 𝑧 𝑗 is i.i.d.

Proof. The window period 0 is 2
𝑘+𝑚0

. The number of new pack-

ets in that period is
2
𝑘+𝑚

0

𝑑
. With 2

𝑘
cells and no packet collisions in

the first window, the probability that a cell stores a new packet ev-

ery window period is
2
𝑘+𝑚

0

𝑑
÷ 2𝑘 = 2

𝑚
0

𝑑
. Suppose a cell has already

stored a new packet. There are still ( 2𝑘+𝑚0

𝑑
− 1) packets coming in

the window period. Each of the (2𝑘 − 1) unoccupied cells has the

probability of ( 2𝑘+𝑚0

𝑑
− 1) ÷ (2𝑘 − 1) ≈ 2

𝑚
0

𝑑
(≈ because 𝑘 is large)

to store a new packet. Therefore, whether a cell has already stored

a new packet does not affect the probability of the rest, proving 𝑧 𝑗
is i.i.d. □
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Algorithm 2: Coefficient algorithm

Input: transmission delay of minimal-sized packets 𝑑 ,𝑚0 , 𝛼 ,𝑇

Output: coefficient

1 coefficient[0] = 1

2 𝑖 = 1

3 𝑧 = 2
𝑚

0 / 𝑑
4 𝑎𝑐𝑐 = 1

5 while 𝑖 < 𝑇 do
6 𝑝 = 1 − 𝑧2

7 𝑎𝑐𝑐= 𝑎𝑐𝑐 × (𝑧 × (1 − 𝑝2
𝛼 ) / (1 − 𝑝) / 2𝛼 )

8 coefficient[𝑖] = 𝑎𝑐𝑐

9 𝑧 = 1 − 𝑝2
𝛼

10 𝑖++

11 end
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𝑡

A

B
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B,2 A,1
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Figure 7: Example of queue monitor in action. The queue
monitor is updatedwith each incoming packet in circle; black
arrows represent stack top pointers; red arrows indicate stack
increase/decrease; grey entries are stale.

In practice, PrintQueue sets the number of cells per window,

2
𝑘
, to be a large number, typically 4096. Besides, time windows

diagnose performance issues at the time of congestion, indicating

the switch is forwarding packets at line rate in specific ports. There-

fore, with 𝑧 = 2
𝑚

0

𝑑
in the first time window, PrintQueue calculates

the 𝑧, 𝑝 and coefficients recursively and estimates per-flow packet

counts from all the time windows.

We note that time windows have higher accuracy in estimating

the packet counts of recent traffic that just enters. Their packets

are located in the initial time windows, with only a small portion of

dropped ones. Old traffic, on the contrary, is heavily compressed in

the deep windows, causing larger errors. Therefore, time windows’

accuracy is biased on traffic’s recency. PrintQueue leverages the

feature and designs the data-plane query to improve accuracy. We

introduce queries in Section 6.

5 QUEUE MONITOR
We augment the time window mechanism with a queue monitor

that tracks the original causes of the current congestion regime for

each port. The queue monitor uses enq_qdepth packet metadata

to learn the queue depth observed by every packet. For ease of

exposition, we discuss tracking for a single port and class of service;

multiple queues are tracked individually.

The primary challenge in the design of the queue monitor is

that the goal of the mechanism—to keep the original causes of

congestion—is fundamentally opposed to the recency bias of time

windows and switch queues. Instead, to retain packets’ influence

1 bit q bits k bits1 bit

𝑟(#𝑝𝑜𝑟𝑡𝑠) 2kcells

Binary of Register Index
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0 …0 0 1 … 0 …0 0 1 …
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Finish reading
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Data-plane Query
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Periodic Polling

1 …0 1 …1

Read
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1 …0 1 …1

Read
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Figure 8: The decomposition of register index is shown in
the top left corner. As shown in the upper part, PrintQueue
flips the second-highest-order bit for asynchronous query.
In the lower part, PrintQueue flips the highest-order bit for
data-plane query and locks itself until the completion of
reading the special registers.

for an arbitrary time, PrintQueue’s queue monitor is structured as

a sparse stack.
Conceptually, the queue monitor is a register array with length

equal to the maximum length of the queue divided by the buffer al-

location granularity. Another register, acting as a ‘stack top’ pointer,

stores the latest queue depth at the time of enqueue. In the egress

stages, whenever a packet changes the queue depth (𝑙1 → 𝑙2), the

packet’s flow ID will be added to the 𝑙2 register entry along with a

monotonically increasing sequence number. Each entry consists of

two parts. The upper half stores metadata for depth increases, and

the lower half stores decreases. PrintQueue updates the top pointer

in both cases.

In this mechanism, some entries (even those ‘under’ the top

pointer) may be empty or filled with stale packets. Consider the

instance in Figure 7: (1) at 𝑡 = 1, packet B brings the queue from a

depth of 2 to 5 units, (2) at 𝑡 = 2, the queue drains back to 2, and (3)

at 𝑡 = 3 packet D brings the queue up to 7 units. Entries at 2, 5, and

7 record depth increases, but the entry at 5 is from a previous peak.

PrintQueue can correct for this using the aforementioned sequence

numbers. Specifically, the analysis program can, after the fact, walk

the array starting from 0 to the current value of the top pointer

and make note of the largest sequence number observed thus far.

Entries are only considered if they have a higher sequence number

than previous entries.

The above algorithm may generalize to other scheduling algo-

rithms. In particular, we note that efficient queue management

at high bandwidth puts certain restrictions on feasible hardware.

Others have observed this and created general frameworks for con-

structing advanced scheduling out of smaller FIFO queues [20, 22,

32, 33]. The queue monitor can track each priority or rank sepa-

rately.

6 ANALYSIS PROGRAM
The control-plane analysis program runs on the switch’s control

CPU. The analysis program has three main functions: (1) configure

PrintQueue on specific ports, (2) checkpoint/collect time window

and queue monitor data-plane state, and (3) execute queries.
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6.1 Port Configuration
Users can activate the time windows and queue monitor on a per-

port basis, and they will track each port’s queues separately. Un-

der the hood, users first specify the number of ports activating

PrintQueue, denoted as #ports. PrintQueue rounds up #ports to the

nearest power of 2, denoted as 𝑟 (#ports). PrintQueue then allo-

cates several large register arrays (one for the queue monitor and

𝑇 for the time windows). Every register array consists of 𝑟 (#ports)
partitions, each intended for the use of a single port. The size of

the queue monitor array is a function of the number of ports and

maximum queue depth; the sizes of the time window arrays are a

function of the number of ports and the size of the time windows

structure.

PrintQueue contains a flow table in the ingress stages thatmatches

on the egress port and gates activation of PrintQueue’s mechanisms.

Specifically, the flow table matches the destination port and returns

the prefix of the port’s registers (i.e., the value of the 𝑞 bits in

Figure 8). If no matching is found, the packet is ignored.

6.2 Frozen Register Reads
While the time windows and queue monitor are updated on ev-

ery packet, the analysis program reads them on a much coarser

granularity. Its reads are triggered in two ways: periodically (to

checkpoint the state) and on-demand (e.g., as a result of a data-plane

triggered query).

Periodic reads. The analysis program saves the values in the time

windows and queue monitor every set time in order to ensure that

it has culprit information for any possible query interval. More

specifically, a set of time windows covers a contiguous time span

of 𝑡set =
2
𝛼𝑇 −1
2
𝛼−1 2

𝑚0+𝑘
. PrintQueue must capture a snapshot of the

register state at least once per 𝑡set before oldest unread values are

aged out of the time windows.

To ensure atomic and serializable reads of all of the data, Print-

Queue borrows a technique from Mantis [31] and periodically

‘freezes’ the full set of time windows and queue monitor. While

PrintQueue reads the frozen copy, the data plane continues to up-

date a second set of registers. As shown in Figure 8, PrintQueue

implements this by flipping the second-highest-order bit in the

register index every 𝑡set, when the register set is fully loaded.

On-demand reads. Reads can also be triggered on-demand to take

advantage of time windows’ recency bias, i.e., that recovery from

the initial time windows tends to be more accurate. Examples of

on-demand triggers include packets with unusually high queuing

delay, sampled members of a high-priority flow, or a special end-

host-generated probe.

In these cases, when PrintQueue sees a packet that requires diag-

nosis, the data plane immediately freezes the current data, directs

subsequent per-packet updates to a third set of registers, and sends

a notification to the control-plane analysis program. Periodic up-

dates will flip between the two unused sets of registers. The analysis

program, upon receiving the notification, knows the existence of

the on-demand read and starts to read the recently frozen regis-

ter set (we call it the ‘special’ registers). The notification contains

the triggering packets’ enqueue and dequeue timestamps, which

can act as the query interval. As shown in Figure 8, PrintQueue

Algorithm 3: Filter algorithm for time windows

Input: windows,𝑇 , 𝑘 , 𝛼

1 𝑖 = 0

2 TTS, CID, Idx = LatestCell(windows[0])
3 for 𝑖 < 𝑇 do
4 𝑗 = 0

5 for 𝑗 ≤ Idx do
6 if windows[𝑖][𝑗].CycleID ≠ CID then
7 windows[𝑖][𝑗] = nil
8 𝑗++

9 end
10 for 𝑗 < 2

𝑘 do
11 if windows[𝑖][𝑗].CycleID + 1 ≠ CID then
12 windows[𝑖][𝑗] = nil
13 𝑗++

14 end
15 TTS = (TTS −2𝑘 ) >> 𝛼 (the most recently passed cell)

16 Idx = TTS & (2𝑘 − 1)
17 CID = TTS >> 𝑘

18 𝑖++

19 end

implements this by flipping the highest-order bit of register index

in the data plane. Note that only a single on-demand read can be in

progress at any point. Concurrent reads will be temporarily ignored

until PrintQueue can finish reading the special register set.

We note that the time periods covered by the periodically polled

registers and special registers do not overlap, because packet at any

time point would belong to only one register set.

6.3 Query Execution
After reading the registers, the analysis program stores the values

for use in query execution. Queries are distinguished by whether

they target information in the time windows or the queue monitor,

which accept different inputs and return different results:

• Time window queries accept a query interval as input and

return an estimate of the per-flow packet counts over that

period, whether for direct or indirect culprits.

• Queue monitor queries accept a query point as input and return

the list of original causes of congestion at the time instant

closest to the input time.

The queries are also classified into two types: asynchronous

and data-plane queries. The former accept arbitrary query inter-

vals/points in the control plane and retrieve packets from all the

registers. The latter, however, are initiated by packets in the data

plane, leverage the on-demand reads, and retrieve packets from

the special registers. Both are eventually executed by the analysis

program.

Time window queries. Querying time windows involves two

steps: filtering out stale cells and accumulating packet counts. Fil-

tering (Algorithm 3) is applied once to remove old packets that

have not yet been evicted from the raw time windows. LatestCell()
in line 2 iterates through all the cells in a window, finds the latest

one, and returns its TTS, cycle ID, and cell index. PrintQueue only

retains cells that are either (1) in the same cycle ID or (2) in the

previous cycle ID with an index greater than the latest cell, i.e.,

within one window period of the most recent cell.

When a query arrives, PrintQueue first determines the set of

applicable time windows. If the query interval crosses multiple
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windows or window sets, PrintQueue splits it into disjoint pieces.

In each time window, it divides the per-flow packet counts by the

corresponding coefficient[𝑖]. Finally, PrintQueue aggregates the

results from each window.

Queue monitor queries. Queue monitor queries also involve a

filtering and a retrieval step. Filtering is necessary to remove stale

entries that arise from the combination of fluctuating queue depths

and the sparse layout of the data structure. It occurs exactly as

described at the end of Section 5. As mentioned, when a query

arrives, PrintQueue returns the queue monitor snapshot closest to

the query time.

7 EVALUATION
We implement a prototype of PrintQueue on a Tofino programmable

switch. Time windows need 4 MAU stages for preparations and

two additional stages for each time window. The queue monitor

uses six, but these can be overlapped with the above. PrintQueue

consists of ∼5000 lines of code in total.

7.1 Time Windows Performance
Testbed and workload. To evaluate the time windows mechanism,

we use a hardware testbed consisting of a single Tofino switch and

4 Linux servers. Each server has 2× 2.40 GHz Xeon E5-2620 v3 CPU

and 64GB RAM. Two servers send traffic through 40Gbps links,

while the other two receive the traffic through 10Gbps links.

For workloads, we utilize the University of Wisconsin Data Cen-

ter Trace [4] (abbrev. UW) and two synthetic traces modeled after

well-known flow size distributions. The first pattern is from web

search tasks [3] (abbrev. WS), while the second is from a data min-

ing cluster [9] (abbrev. DM). Flows and packets arrive according to

Poisson processes. We use tcpreplay to emulate the TCP packet

traces. To scale up the traces to today’s link speeds, we leverage the

tcpreplay multiplier option and the Netmap [19] driver to ensure

the kernel can keep up. The two senders replay different pcap files.

In order to capture the ground-truth, the switch inserts a teleme-

try header into every packet that contains the enqueue/dequeue

timestamps and queue depth at the packet’s enqueue time. This

header is not required in a real PrintQueue deployment—only to

compute our evaluation metrics. On the receiver, the server lever-

ages DPDK [7] to process packets at line rate and store the telemetry

headers in files. The ground-truth per-flow packet counts are later

computed by parsing the files for their dequeue timestamps.

Methodology.We evaluate a range of configurations and examine

several classes of packets in each. To evaluate worst-case perfor-

mance, we assume asynchronous queries on periodically read data

unless otherwise specified. When we evaluate on-demand queries,

we examine performance for the packet that triggered the lookup.

Regardless of the query type, we choose a victim packet and pro-

vide its enqueue and dequeue time to the analysis program as the

query interval. Note that this corresponds to a query for the directly

culpable packets, but queries for indirect culprits are identical.

Separately, we examine the logged telemetry headers to compute

the ground truth of which packets were dequeued during the target

period. With both the time windows and the ground truth per-

flow packet counts, we use precision and recall to calculate the
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Figure 9: Precision and recall versus queue depth under dif-
ferent workloads.

accuracy of PrintQueue. We first compute, for every flow in the

query period, the true positives of PrintQueue. Precision is the sum

of the true positives over PrintQueue’s cumulative packet count

estimate. Recall is the sum of the true positives over the ground

truth’s cumulative estimate. The time window result is equivalent

to the ground truth if and only if both precision and recall are 1.

Accuracy versus queue depth. We begin by analyzing accuracy

as a function of queue depth under our three workloads.

For a given victim packet, we classify its query into six groups

based on the queuing it encounters: 1k to 2k, 2k to 5k, 5k to 10k, 10k

to 15k, 15k to 20k, and above 20k. For asynchronous queries (abbrev.

AQ), we randomly sample 100 victim packets experiencing each

queue depth, query their direct causes of congestion, and compute

precision and recall of the results (larger sample sizes produced

similar results). For on-demand data-plane queries (abbrev. DQ),

we add a threshold in the data plane that initiates a query if they

observe each queue depth.

Figure 9 shows the average accuracy for each queue-depth group.

For data-plane queries, the accuracy is consistently high (>90%) be-

cause the queries are predominantly touching the least compressed

time windows. Accuracy decreases slightly for longer query inter-

vals as the first time window can no longer hold all the packets

of the target interval, pushing some culprits into deeper windows.

Somewhat surprisingly, for asynchronous queries, we see the op-

posite trend: the accuracy is higher for longer query intervals,

but decreases for shorter intervals as intervals have a chance of

falling into a more heavily approximated time window, which has

a disproportionate effect on short query intervals. Note that while

data-plane queries are always more accurate than asynchronous

queries, they must read an extra set of registers, which has a rate

limited by the efficiency of control plane polling. Thus, operators

should be judicious about initiating data-plane queries.

The accuracy differences among the three traces primarily stem

from packet size (UW: around 100 bytes, WS/DM: near MTU). With

a constant link rate of 10Gbps, packets are forwarded at different

rates (UW: 9.1Mpps with average packet interval 110 ns, WS/DM:

0.84Mpps with average packet interval 1200 ns).We choose𝑚0 = 10

and a smaller compression factor 𝛼 = 1 for WS/DM while𝑚0 =

6, 𝛼 = 2 for UW. 𝑇 = 4 and 𝑘 = 12 for all. Fundamentally, the

accuracy of UW is lower because the number of packets to track is

near 10× times larger than in WS/DM. Because of that, UW has to

use a bigger compression factor 𝛼 = 2, leading to bigger errors.

Our Python analysis program front end can execute∼100 queries
per second.
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Figure 10: PrintQueue versus HashPipe and FlowRadar with different queue-depth-based query intervals under UW traces. The
resource consumption of the primary data structures of each approach are listed in the graphs of the left-most column.

1 - 2 2 - 5 5 - 1 0 1 0 - 1 5 1 5 - 2 0 > 2 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0  P r i n t Q u e u e  P      P r i n t Q u e u e  R

 H a s h P i p e  P    H a s h P i p e  R
  F l o w R a d a r  P    F l o w R a d a r  R

Ac
cur

acy

Q u e u e  D e p t h  ( 1 0 3 )
(a) 𝛼 = 2, 𝑘 = 12, 𝑇 = 4

1 - 2 2 - 5 5 - 1 0 1 0 - 1 5 1 5 - 2 0 > 2 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0  P r i n t Q u e u e  P      P r i n t Q u e u e  R

 H a s h P i p e  P    H a s h P i p e  R
  F l o w R a d a r  P    F l o w R a d a r  R

Ac
cur

acy

Q u e u e  D e p t h  ( 1 0 3 )
(b) 𝛼 = 2, 𝑘 = 12, 𝑇 = 5

1 - 2 2 - 5 5 - 1 0 1 0 - 1 5 1 5 - 2 0 > 2 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cur

acy

Q u e u e  D e p t h  ( 1 0 3 )

 P r i n t Q u e u e  P      P r i n t Q u e u e  R
 H a s h P i p e  P    H a s h P i p e  R
  F l o w R a d a r  P    F l o w R a d a r  R

(c) 𝛼 = 3, 𝑘 = 12, 𝑇 = 4

Figure 11: PrintQueue versus related works with different parameters under UW traces.

Trace PrintQueue HashPipe FlowRadar

UW 0.684/0.634 0.396/0.341 0.391/0.350

WS 0.909/0.864 0.801/0.582 0.763/0.582

DM 0.977/0.948 0.838/0.671 0.838/0.671

Table 2: Average precision/recall of PrintQueue, HashPipe,
and FlowRadar under different traces.

PrintQueue versus other systems. The above accuracy num-

bers significantly outperform existing work, which tends to collect

and reset the data structures at fixed intervals. To provide a fair

comparison, we use two recent proposals for flow-size estimation,

HashPipe [23] and FlowRadar [15], and set their reset intervals to

the set period of PrintQueue (as the periodic control plane polling

interval is the common bottleneck). These configurations result

in comparable SRAM requirements: HashPipe and FlowRadar use

4096 register entries in each of five stages, while PrintQueue uses

4096 cells in each of four time windows. We note that HashPipe

and FlowRadar are only queryable on the granularity of a reset pe-

riod. We, therefore, improve their estimations by prorating packet

counts using a multiplier equal to the length of the query interval

over the length of the total period. For fairness, we also only show

PrintQueue results on asynchronous queries, as data-plane queries

have much higher accuracy. We do not compare to sketches as they

cannot provide flow IDs, only aggregate byte counts.

As shown in Table 2, the average precision and recall of Print-

Queue is significantly higher than either HashPipe or FlowRadar

under all three workloads. We dig further into the UW traces, which

are the most challenging. Figure 10 shows the results for a few cat-

egories of queue depths (i.e., query intervals): low occupancy (1k

to 5k), medium occupancy (5k to 15k), and high occupancy (>15k).

The median accuracy of PrintQueue is up to 3× times higher than

that of existing work. The results of HashPipe and FlowRadar are

similar, as they both capture the heavy hitters over the entire mon-

itoring interval. We note that these inaccuracies are not caused by

hash collisions or other factors that are traditionally the target of

heavy-hitter accuracy improvements. Rather, it is because they run

in fixed monitoring intervals, and proportional prorating of the

results can greatly over- or under-estimate reality.

PrintQueue versus related work with different parameters.
We repeat the comparisons under UW traces while varying the

parameters 𝛼 , 𝑘 , and 𝑇 . Each subgraph of Figure 11 shows the

median accuracy of the sampled packets for different queue depths.

Across all evaluated parameter sets, PrintQueue outperforms

existing work at larger query intervals. PrintQueue can also outper-

form existing work at small query intervals, but its accuracy can

drop with higher values of 𝛼 and 𝑇 . For the former, it is because

the compression ratio becomes too large. In particular, the queuing

period of 1k to 2k depth is approximately 60 μs to 120 μs. With

𝛼 = 3,𝑇 = 4, the cell periods of the four windows are 64 ns, 512 ns,

4 μs, and 32 μs. If the query interval falls into the last window–a

common occurrence in asynchronous queries—time windows must

estimate the per-flow packet counts with only four cells total. A
similar effect occurs when we increase 𝑇 and add a time window

with lower accuracy. Larger query intervals decrease the proba-

bility of this worst-case scenario and enable queries to leverage

the advantages of PrintQueue’s exponential storage. Data-plane

queries do not suffer from either issue.
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Figure 12: Top-K flows from a single time window under UW
traces.
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Figure 13: Storage versus accuracy with 𝜶 , 𝒌, 𝑻 under UW
traces.

In practice, network operators should choose the lowest values

of 𝛼 and 𝑇 that are feasible for their networks. We evaluate and

discuss relevant constraints later in this section.

Accuracy versus different windows for Top-K flows. We next

evaluate the relative accuracy of individual time window with the

metric of Top-K flow packet counts. We again focus on the UW

traces. We use 𝛼 = 1, 𝑘 = 12,𝑇 = 5, and set the query interval to be

the full window period.

As shown in Figure 12, the accuracy of 5 windows varies. As

expected, the precision drops with the depth of windows, with the

first window achieving precision near 1 because it is un-compressed.

Any errors are due to mismatches between the packet size and

cell granularities. As in previous experiments, errors accumulate in

deeper windows.We note that since each packet has an approximate

probability of being passed across windows, PrintQueue tends to

store flows with more packets and so the top-k results remain

relatively accurate. For reference, during most window periods, the

flow number is on the order of thousands.

We observe that the UW traces [4] have an extreme long-tailed

distribution. In fact, the packet count of the 100th largest flow is

less than 1% of the packet count of the largest flow. When moving

to the Top-500 flows, the mice begin to overwhelm the elephants,

dropping the accuracy in larger time windows.

Accuracy versus control-plane overhead. One underlying con-

straint on the configuration of PrintQueue is the control plane’s

ability to extract results frequently enough to ensure no gaps in

time window coverage. Fundamentally, the control plane is limited

by analysis program I/O throughput and PCIe bandwidth. Thus,

the limitation can be quantified in terms of the number of register

entries that can be read per second.
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Figure 14: Storage overhead comparison and SRAM.
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Figure 15: Accuracy versus port number under WS traces.

Figure 13 shows the required PCIe bandwidth in MB/s versus

precision and recall for different configurations of PrintQueue under

UW traces. We plot a rough estimate of the maximum capabilities of

our current analysis program implementation. When the data size

per second is above the line, the time needed to read the registers is

longer than PrintQueue’s set period, which leads to packets getting

evicted before they are successfully read and stored.

With larger 𝛼 , the compression of PrintQueue becomes more

aggressive, reducing the I/O requirements of the system. At the

same time, larger 𝛼 leads to reduced precision and recall. 𝑇 has a

similar effect as each additional window has exponentially more

compression, but here too, more compression translates to less

accuracy.

The parameter 𝑘 does not influence parameter feasibility, as the

set period and the number of registers are multiplied by the same

factor. Our experiment also shows that 𝑘 has little impact on the

accuracy for asynchronous queries under UW traces. Larger values

of 𝑘 are, however, preferred for data-plane queries as they mean

that longer query intervals fit within the initial time windows. The

configurations we chose in the preceding sections related to queries

are all below the feasibility line.

Linear storage versus exponential storage. We also compare

PrintQueue’s storage overhead with techniques like NetSight [10]

and BurstRadar [13]—two systems with linear storage requirements.

Figure 14(a) shows the ratio of the linear storage overhead to Print-

Queue’s overhead with different 𝛼, 𝑇 . PrintQueue’s overhead is up

to three orders of magnitude less than linear storage methods.

SRAM overhead. We evaluate the data-plane SRAM overhead of

time windows across a range of 𝑘 and 𝑇 parameters. 𝛼 does not

affect resource consumption. As shown in Figure 14(b), across dif-

ferent parameters, time windows consume only a moderate amount

of resources, making the system practical in real networks.

Port parallelism. We activate PrintQueue on several of ports

simultaneously and evaluate the accuracy for a single one. Naturally,

we can activate more ports if the SRAM usage grows linearly with
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Figure 16: Time windows versus queue monitor for tracking
the burst flow.

the port number. But the method does not scale as the port number

continues growing. Instead, we adjust parameters 𝛼 and 𝑘 to reduce

the total SRAM cost. Figure 15 shows accuracy of asynchronous

queries against the total data-plane SRAM utilization. With 𝛼 = 2,

at most 10 ports can run PrintQueue in parallel. A further increase

is constrained by the PCIe bandwidth limit of the local interface.

7.2 Queue Monitor Case Study
We show the effectiveness of the queue monitor qualitatively using

a case study. Specifically, we let one server send a background TCP

flow limited to ∼90% of the link capacity (9 Gbps). Another server

first sends a burst of 10000 datagrams at a rate of 4Gbps. After a

short time, it then begins a TCP flow at a low rate (0.5 Gbps).

As shown in Figure 16(a), the burst flow causes a rapid increase

in queue depth. While the burst flow lasts for only around 5ms,

the queuing caused by the burst lasts for 376ms (i.e., 76× times

longer than the burst period itself)! The new TCP flow arrives at

the blue arrow in Figure 16(a). At the star, PrintQueue leverages

time windows and the queue monitor to query the direct, indirect,

and original culprits to diagnose the high queuing delay of the new

TCP flow. In this setting, we expect to be able to implicate the burst

flow because, without it, the queuing would not exist or be nearly

as severe.

As shown in Figure 16, direct culprits consider the background

traffic the most significant contributor. They do not include any

packets of burst flow, as the packets have long before left the queue.

Indirect culprits have captured all the packets since the beginning

of the congestion. The burst flow can be found, but it is indistin-

guishable from a normal mouse flow. The results of the query for

the original culprits, instead correctly show that the culpability

of the burst flow is comparable to that of the background traffic

(5597:6096) despite their differences in total size.

The SRAM usage of queue monitor for a single port is 12.81% of

data-plane resources.

8 RELATEDWORK
PrintQueue is related to a rich body of prior work in queue and per-

formance monitoring. In this section, we discuss the most relevant

work in these areas.

Queue measurement techniques. Others have previously noted

the importance of queue-based performance monitoring and pro-

posed methods to do so. Many of the earlier instances in this set

focus on the length of the queue rather than its contents [29, 35].

Many others rely on raw flow sampling [10, 11, 13, 18, 25, 37] to

reconstruct queue contents; compared to these approaches, Print-

Queue requires significantly less space and pipeline overhead.

One particularly relevant work to time windows is ConQuest [5,

6], which also tracks queue composition in the data plane using a

special snapshot-based data structure. However, ConQuest solves

a different problem. It judges whether the current packet’s flow is

the main contributor to queuing. To implicate the causes of delay

in a specific victim packet’s queuing, ConQuest would need offline

storage space linear to the total packets in the network. Further,

ConQuest only supports FIFO queues while PrintQueue’s time

windows are agnostic to the packet scheduling policy.

We also note that Microscope [8] makes a similar observation

about the importance of historical causes of queuing, but in the

context of network function performance. The specifics of packet

queuing delay and PrintQueue’s implementation on programmable

data planes introduce novel constraints.

Flow counting techniques. Prior work, e.g., FlowRadar [15], Tur-
boFlow [24], and CounterBraids [16], develops accurate per-flow

traffic counters. Heavy hitter detection techniques, e.g., HashPi-

pe [23], DOVE [14], and others [17, 26, 34], only track the traffic of

large flows. Flow counter techniques can provide flow information

along with its size like PrintQueue. But they work under fixed time

periods, failing to retrieve flows in arbitrary query intervals.

Bandwidthmeasurement techniques.Work [27]measures band-

width at all time scales. But it calculates total rates without the

knowledge of each flow’s contribution. The algorithms modify the

network stacks of end hosts and can not be applied in today’s

programmable switches.

Provenance. Prior work, e.g., Dapper [21], DTaP [36], Zeno [28],

gives detailed explanations of event causes in the distributed system.

PrintQueue expands the concept of provenance to packet queuing.

PrintQueue’s results can be incorporated into these higher-level

frameworks.

9 CONCLUSION
In this paper, we systematically classify the culprit packets of queu-

ing in switches. We present PrintQueue, a practical data-plane

monitoring system for tracking the provenance of packet-level

queuing delays at both small and large timescales. We design time

windows to capture direct and indirect culprits over any time span,

and queue monitor to track original culprit packets. We imple-

ment PrintQueue on a Tofino switch and evaluate it with multiple

network traces. Through evaluations, we show that PrintQueue

achieves high accuracy with limited overhead.
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A ARTIFACT APPENDIX
Abstract
PrintQueue’s artifact is publicly available, including the source code

and documents for all the mentioned components in the paper. The

artifact can reproduce the paper results. The detailed instructions to

build, deploy, and operate the system are introduced in the Github
repository.

Scope
The artifact is used to reproduce all the major results of PrintQueue.

Contents
The artifact includes the source code of PrintQueue, consisting of:

• P4 code running at Intel Tofino programmable switch, including

the data-plane code (implementation of time windows and

queuemonitor) and control-plane code (read and filter registers;

execute queries).

• DPDK code running at receiver server, extracting and storing

PrintQueue telemetry headers.

• Code to simulate traces modelled after DCTCP and VL2 flow

distribution.

• Experiment data collected from our testing and script to repro-

duce the paper results.

Hosting
The aritifact is accessible via Github (please refer to the master
branch and the latest commit) and Zenodo.

• Github link: https://github.com/A-Dying-Pig/PrintQueue/tree/

master

• Zenodo DOI: 10.5281/zenodo.6789638

Requirements
PrintQueue requires specific hardware and software environments:

• The switch code functioned on the Intel Tofino switch.

• The receiver code required DPDK-compatible NIC and DPDK

library.

• The packages required by Python scripts were listed in the

documents.

529

https://doi.org/10.1145/3131365.3131375
https://doi.org/10.14778/2535568.2448939
https://doi.org/10.14778/2535568.2448939
https://github.com/A-Dying-Pig/PrintQueue/tree/master
https://github.com/A-Dying-Pig/PrintQueue/tree/master

	Abstract
	1 Introduction
	2 Describing a Congestion Regime
	3 Design Overview
	4 Time Windows
	4.1 Physical Layout
	4.2 Per-packet Procedure
	4.3 Analysis and Proofs

	5 Queue Monitor
	6 Analysis Program
	6.1 Port Configuration
	6.2 Frozen Register Reads
	6.3 Query Execution

	7 Evaluation
	7.1 Time Windows Performance
	7.2 Queue Monitor Case Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix



