
L i a n g c h e n g Y u

1 0 / 0 7 / 2 0 2 2
@ M S R N e t w o r k i n g R e s e a r c h G r o u p

Automatic	In-network	Control	Empowered	
by	Programmable	Infrastructure

Ubiquitous	network	control	tasks

Ubiquitous	network	control	tasks
Out-of-control events
• Congestion collapse
• TCP incast
• Network hotspot
• DoS attack
• Network failure
• Time drift
• Bandwidth starvation
• …

Ubiquitous	network	control	tasks
Out-of-control events
• Congestion collapse
• TCP incast
• Network hotspot
• DoS attack
• Network failure
• Time drift
• Bandwidth starvation
• …

• Congestion control
• Desynchronization
• Load balancing
• Defense policy
• Failure mitigation
• Clock synchronization
• Fairness control
• …

 Closed-loop control mechanisms

Anatomy	of	network	control

Anatomy	of	network	control

System identification
Linear models? Blackbox? Source
of disturbances or misbehaviors?

Anatomy	of	network	control

System identification
Linear models? Blackbox? Source
of disturbances or misbehaviors?

Measurement
Target signals? Granularity?
Explicit or implicit? Synchronous?

Anatomy	of	network	control

System identification
Linear models? Blackbox? Source
of disturbances or misbehaviors?

Controller logic
Position? Distributed? Stability?
Control interval time scale?

Measurement
Target signals? Granularity?
Explicit or implicit? Synchronous?

Anatomy	of	network	control

System identification
Linear models? Blackbox? Source
of disturbances or misbehaviors?

Actuation
Adaptive? Rate limiter config?
Switch weights? Routes? Pacing?

Measurement
Target signals? Granularity?
Explicit or implicit? Synchronous?

Controller logic
Position? Distributed? Stability?
Control interval time scale?

Sustaining	network	control
Faster networks [Gbps]< 1 → 10 → 100 → 800 → …

Sustaining	network	control
Faster networks [Gbps]
• Microscopic (O()) events are prevalent
• Challenging to sense, analyze, and react

< 1 → 10 → 100 → 800 → …
μs

Sustaining	network	control
Faster networks [Gbps]
• Microscopic (O()) events are prevalent
• Challenging to sense, analyze, and react

< 1 → 10 → 100 → 800 → …
μs

Traditional network control
• Infrequent (O(100)), asynchronous, and manualms

Sustaining	network	control
Faster networks [Gbps]
• Microscopic (O()) events are prevalent
• Challenging to sense, analyze, and react

< 1 → 10 → 100 → 800 → …
μs

Traditional network control
• Infrequent (O(100)), asynchronous, and manualms

Towards fast, real-time, and automatic control at scale?

Opportunities:	in-network	control

Opportunities:	in-network	control

Specialization
• High throughput (>12.8 Tbps, billions of operations/s)
• Little additional overhead with processing logic

Opportunities:	in-network	control

Specialization
• High throughput (>12.8 Tbps, billions of operations/s)
• Little additional overhead with processing logic

Locational benefits
• Customizable line-rate processing to reduce (tail) latency
• Visibility into accurate network information

Opportunities:	in-network	control

Specialization
• 12.8 Tbps of throughput and beyond
• Low overhead with additional processing logic

Unique locational benefits
• Processing along packet path to reduce (tail) latency
• Visibility into accurate network information

Once you’ve got a software platform where you can change its
behavior, you can start introducing previously absurd-sounding
ideas, including fanciful ideas of automatic, real-time, closed-

loop control of an entire network.” — Nick McKeown

Pushing	switches	to	the	limit	via	tight	coupling
Mantis [SIGCOMM ’20]
Co-design data and control plane
for micro, reactive transactions

1

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf

Pushing	switches	to	the	limit	via	tight	coupling
Mantis [SIGCOMM ’20]
Co-design data and control plane
for micro, reactive transactions

1 Cebinae [SIGCOMM ’22]
Co-opt data-path rate-limiters and control-path
reconfiguration for CCA unfairness mitigation

2

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf
https://liangchengyu.com/doc/cebinae-sigcomm2022.pdf

Pushing	switches	to	the	limit	via	tight	coupling
Mantis [SIGCOMM ’20]
Co-design data and control plane
for micro, reactive transactions

1 Cebinae [SIGCOMM ’22]
Co-opt data-path rate-limiters and control-path
reconfiguration for CCA unfairness mitigation

2

OrbWeaver [NSDI ’22]
Weave user and control packets for
near-free communication channel

3

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf
https://liangchengyu.com/doc/cebinae-sigcomm2022.pdf
https://liangchengyu.com/doc/orbweaver-nsdi2022.pdf

Pushing	switches	to	the	limit	via	tight	coupling
Mantis [SIGCOMM ’20]
Co-design data and control plane
for micro, reactive transactions

1 Cebinae [SIGCOMM ’22]
Co-opt data-path rate-limiters and control-path
reconfiguration for CCA unfairness mitigation

2

OrbWeaver [NSDI ’22]
Weave user and control packets for
near-free communication channel

3PrintQueue [SIGCOMM ’22]
Correlate packets at small and large
timescales for packet-level delay provenance

4

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf
https://liangchengyu.com/doc/cebinae-sigcomm2022.pdf
https://liangchengyu.com/doc/orbweaver-nsdi2022.pdf
https://liangchengyu.com/doc/printqueue-sigcomm2022.pdf

Pushing	switches	to	the	limit	via	tight	coupling
Mantis [SIGCOMM ’20]
Co-design data and control plane
for micro, reactive transactions

1 Cebinae [SIGCOMM ’22]
Co-opt data-path rate-limiters and control-path
reconfiguration for CCA unfairness mitigation

2

OrbWeaver [NSDI ’22]
Weave user and control packets for
near-free communication channel

3PrintQueue [SIGCOMM ’22]
Correlate packets at small and large
timescales for packet-level delay provenance

4

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf
https://liangchengyu.com/doc/cebinae-sigcomm2022.pdf
https://liangchengyu.com/doc/orbweaver-nsdi2022.pdf
https://liangchengyu.com/doc/printqueue-sigcomm2022.pdf

Cebinae:	
Scalable	In-network	Fairness	Augmentation

OrbWeaver:	
Using	IDLE	Cycles	in	Programmable	
Networks	for	Opportunistic	Coordination

Outline

Networks	are	woven	from	packets
• A primary goal of computer networks: deliver packets

Networks	are	woven	from	packets
• A primary goal of computer networks: deliver packets

• User application: video streaming, web browsing, file transfer…

Networks	are	woven	from	packets
• A primary goal of computer networks: deliver packets

• User application: video streaming, web browsing, file transfer…
• Non-user application: control messages, probes about network

state, keep alive heartbeats…

Networks	are	woven	from	packets
• A primary goal of computer networks: deliver packets

• User application: video streaming, web browsing, file transfer…
• Non-user application: control messages, probes about network

state, keep alive heartbeats…

• Often, two classes of traffic multiplex the same network

When	introducing	a	new	in-band	application…	
To consume extra BW for fidelity (of the control application), or not to?

When	introducing	a	new	in-band	application…	
To consume extra BW for fidelity (of the control application), or not to?
• Time synchronization: clock-sync rate clock precision→

When	introducing	a	new	in-band	application…	
To consume extra BW for fidelity (of the control application), or not to?
• Time synchronization: clock-sync rate clock precision
• Failure detector: keep alive message frequency detection speed
• Congestion notification: signaling data/rate measurement accuracy
• In-band telemetry: INT postcard volume post-mortem analysis

→
→

→
→

When	introducing	a	new	in-band	application…	
To consume extra BW for fidelity (of the control application), or not to?
• Time synchronization: clock-sync rate clock precision
• Failure detector: keep alive message frequency detection speed
• Congestion notification: signaling data/rate measurement accuracy
• In-band telemetry: INT postcard volume post-mortem analysis

→
→

→
→

Is the trade-off between fidelity and overhead necessary?

When	introducing	a	new	in-band	application…	
To consume extra BW for fidelity (of the control application), or not to?
• Time synchronization: clock-sync rate clock precision
• Failure detector: keep alive message frequency detection speed
• Congestion notification: signaling data/rate measurement accuracy
• In-band telemetry: INT postcard volume post-mortem analysis

→
→

→
→

Is the trade-off between fidelity and overhead necessary?

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

Idea: Weaved Stream
• Exploit every gap (O(100ns)) between user packets opportunistically
• Inject customizable IDLE packets carrying information across devices

Can we coordinate at high-fidelity with a near-zero
cost to usable bandwidth and latency?

Opportunity: 	gaps	are	prevalent< μs

• Application-level traffic patterns
• TCP effects
• Structural asymmetry
• …

Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

t

100 Gbps

≤ 120 ns

Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

t

100 Gbps

[R1 Predictability] Interval between any two consecutive packets ≤ τ

≤ 120 ns

Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

[R1 Predictability] Interval between any two consecutive packets
[R2 Little-to-zero overhead] Not impact user packets or power draw

≤ τ

t

100 Gbps

≤ 120 ns

Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

[R1 Predictability] Interval between any two consecutive packets
[R2 Little-to-zero overhead] Not impact user packets or power draw

≤ τ

t

100 Gbps

≤ 120 ns
Implement many in-network applications

(failure detection, clock sync, congestion notification…)
for free!

Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

[R1 Predictability] Interval between any two consecutive packets
[R2 Little-to-zero overhead] Not impact user packets or power draw

≤ τ

t

100 Gbps

≤ 120 ns

Crazy	idea?
Extending IDLE characters to higher layers

• Data plane packet generator
• Replication engine
• Data plane programmability
• Flexible switch configuration (priorities, buffers…)

1. Switch data plane architecture
2. Weaved stream generation
3. OrbWeaver applications

Outline

RMT	switch	model

 portsN

Ing. Arbiter

…
Parser

Parser

Ingress
Pipeline

Rx MAC

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Naive	weaved	stream	generation

 rateN/τ

 portsN

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Naive	weaved	stream	generation

 rateN/τ

Predictability even there is no user traffic

 portsN

Problems	with	blind	injection

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Scalability: overwhelm packet generator capacity to satisfy target rate

 portsN

 rateN/τ

Problems	with	blind	injection

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Scalability: overwhelm packet generator capacity to satisfy target rate

Interference upon cross-traffic: throughput, latency, or loss of user traffic!

 portsN

 rateN/τ

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Amplify	seed	stream

 seed rate1/τ

 portsN

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Amplify	seed	stream

 seed rate1/τ

 portsN

Monopolize usage and waste PRE packet-level BW!

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Amplify	seed	stream	on	demand

 seed rate2/τ

 portsN

Selective filtering
• (Tiny) sending history state of past cycle to each egress port
• Create an IDLE packet to a port only if we need an IDLE packet

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Amplify	seed	stream	on	demand

 seed rate2/τ

 portsN

Selective filtering
• (Tiny) sending history state of past cycle to each egress port
• Create an IDLE packet to a port only if we need an IDLE packet

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Cross-traffic	contention

 seed rate2/τ

 portsN

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Cross-traffic	contention

 seed rate2/τ

 portsN

User packets may
starve SEED packets

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Cross-traffic	contention

 seed rate2/τ

 portsN

User packets may
starve SEED packets

IDLE packets may impact
original perf. of user packets

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Preventing	contention

 seed rate2/τ

 portsN

SEED > User
User > SEED

Rich configuration options for priorities and buffer management

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Preventing	contention

 seed rate2/τ

 portsN

SEED > User
User > SEED

Rich configuration options for priorities and buffer management
• Zero impact of weaved stream predictability
• Zero impact of user traffic throughput or buffer usage

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

Preventing	contention

 seed rate2/τ

 portsN

SEED > User
User > SEED

Rich configuration options for priorities and buffer management
• Zero impact of weaved stream predictability
• Zero impact of user traffic throughput or buffer usage
• Negligible impact of latency of user packets

Hardware prototype on a pair of Wedge100BF-32X Tofino switches
Implementation	and	evaluation

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

PD
F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000
O

bs
er

ve
d

in
te

rv
al

 [n
s]

Packet

Target rate
Maximum

Hardware prototype on a pair of Wedge100BF-32X Tofino switches
Implementation	and	evaluation

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

PD
F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000
O

bs
er

ve
d

in
te

rv
al

 [n
s]

Packet

Target rate
Maximum

Takeaway: Little-to-no impact of power draw, latency, or throughput
while guaranteeing predictability of the weaved stream!

OrbWeaver	use	cases

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Self-healing failure detection

Packet forensics

Network queries

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

OrbWeaver	use	cases
Fine-grained network
state inference [R1]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

Self-healing failure detection Network queries

OrbWeaver	use	cases
Fine-grained network
state inference [R1]

Free information
dissemination [R2]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

Self-healing failure detection Network queries

OrbWeaver	use	cases
Fine-grained network
state inference [R1]

Free information
dissemination [R2]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

Self-healing failure detection Network queries

Example:	time	synchronization

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Traditional two-way protocol

Example:	time	synchronization

Existing approaches for high precision
• Require special hardware (such as DTP)
• Require messaging overheads (such as DPTP)

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Traditional two-way protocol

Example:	time	synchronization

Existing approaches for high precision
• Require special hardware (such as DTP)
• Require messaging overheads (such as DPTP)

Challenges to achieve ns precision
• Messaging frequency v.s. clock precision
• Inaccuracies due to queueing delays

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Traditional two-way protocol

Example:	time	synchronization

Existing approaches for high precision
• Require special hardware (such as DTP)
• Require messaging overheads (such as DPTP)

Challenges to achieve ns precision
• Messaging frequency v.s. clock precision
• Inaccuracies due to queueing delays

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Ing. Arbiter

…
Parser

Parser

Ingress
Pipeline

Rx MAC

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Data plane timestamps don’t capture
the actual point of serialization

OrbWeaver	redesign
Key ideas:
1. Embed timestamp information in free IDLE packets [R2]

OrbWeaver	redesign
Key ideas:
1. Embed timestamp information in free IDLE packets [R2]
2. Selective synchronization: infer queue delay from IDLE gaps and

filter out unreliable messages [R1]

OrbWeaver	redesign

Achieve same or better performance with close-to-zero overheads

Key ideas:
1. Embed timestamp information in free IDLE packets [R2]
2. Selective synchronization: infer queue delay from IDLE gaps and

filter out unreliable messages [R1]

0.0
0.2
0.4
0.6
0.8
1.0

 1 10 100

C
D

F

Offset [ns]

Medium
Heavy

Medium (selective)
Heavy (selective)

100
101
102
103
104
105

DPTP-OW DPTP
PTP(15ms)

PTP(750ms)

Pr
ec

is
io

n
[n

s]

Example:	failure	detection

Common approaches
• Regular, high priority heartbeats
• Conservative detection thresholds

Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?

Example:	failure	detection

Common approaches
• Regular, high priority heartbeats
• Conservative detection thresholds

OrbWeaver approach
• Exploit guaranteed predictability of max gap with

weaved stream (e.g., 120 ns for 100GbE) [R1]
• Exploit IDLE bandwidth to send flow event logs [R2]Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?

Example:	failure	detection

Common approaches
• Regular, high priority heartbeats
• Conservative detection thresholds

OrbWeaver approach
• Exploit guaranteed predictability of max gap with

weaved stream (e.g., 120 ns for 100GbE) [R1]
• Exploit IDLE bandwidth to send flow event logs [R2]Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?

Push toward an instantaneous self-healing failure
mitigation (with data plane reroute) of optional speed

Summary

• Weaved stream abstraction to harvest IDLE cycles
• Guarantee predictability with little-to-zero overhead

Summary

• Weaved stream abstraction to harvest IDLE cycles
• Guarantee predictability with little-to-zero overhead

• Generic support of a wide range of data plane applications for free
• Don’t need to choose between coordination fidelity and bandwidth overhead

https://github.com/eniac/OrbWeaver

Cebinae:	
Scalable	In-network	Fairness	Augmentation

OrbWeaver:	
Using	IDLE	Cycles	in	Programmable	
Networks	for	Opportunistic	Coordination

Outline

Public	networks	care	about	fairness

CCA′ ≠ CCA

CCA RTT

RTT′ ≠ RTT

Public Networks

Public	networks	care	about	fairness

CCA′ ≠ CCA

CCA RTT

RTT′ ≠ RTT

Public Networks

Increasing heterogeneity

Public	networks	care	about	fairness

CCA′ ≠ CCA

CCA RTT

RTT′ ≠ RTT

Public Networks

Increasing heterogeneity

RTT
Unfairness

Inter-CCA
Unfairness

Fairness	enforcement	at	the	end	hosts?

Public Networks

Fairness	enforcement	at	the	end	hosts?

Public Networks

Hard to deploy and upgrade the same CCA

Fairness	enforcement	at	the	end	hosts?

Public Networks

Hard to deploy and upgrade the same CCA

Few incentives for self-policing mechanism

In-network	fairness	enforcement

Public
Networks

Incentives often from operators of
the in-network devices

In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities

• Assumption: specialized hardware for per-flow queues, end-host
cooperation…

In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities

• Assumption: specialized hardware for per-flow queues, end-host
cooperation…

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware
• Constraints: e.g., # priorities, # queues, buffers

In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities

• Assumption: specialized hardware for per-flow queues, end-host
cooperation…

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware
• Constraints: e.g., # priorities, # queues, buffers

Challenging to strictly enforce FQ on each individual flow

Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time

• Penalize/redistribute BW from flows exceeding fair share to others

Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time

• Penalize/redistribute BW from flows exceeding fair share to others
• Binary classification of flows

• Efficiently implement various subroutines (e.g., leaky-bucket filter)

Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time

• Penalize/redistribute BW from flows exceeding fair share to others
• Binary classification of flows

• Efficiently implement various subroutines (e.g., leaky-bucket filter)

• Zero modifications and coordinations to/with legacy host CCAs
• Requirement of only two queues/priorities
• Compatibility with CCAs operating on both loss and delay signals

Cebinae router architecture for binary taxation

1. Conceptual foundation for binary classification

2. Cebinae’s taxation mechanism

3. Evaluation

Outline

Public
Networks

 l

An allocation
of rates {ri}

Max-min	fairness

For every flow there exists at least one bottleneck link where:
(1) is saturated
(2) is among the largest flows sharing the link

i l
l
ri l

Public
Networks

 l

An allocation
of rates {ri}

Max-min	fairness

Implication: distributed verification of max-min fairness

For every flow there exists at least one bottleneck link where:
(1) is saturated
(2) is among the largest flows sharing the link

i l
l
ri l

Local	verification
Each link can determine the set of bottlenecked flows: l

Local	verification
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked

l
l

Local	verification
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

Local	verification
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

Observation:
1. Each conditional can be determined

using only local information

Local	verification
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

Observation:
1. Each conditional can be determined

using only local information
2. Binary classification: bottlenecked

(), not bottlenecked ()⊤ ⊥

Naive	enforcement
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Drop packets of all s per their current ratei

Naive	enforcement
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Drop packets of all s per their current ratei

Drawbacks:
1. Can’t make an already-

unfair allocation fair

Naive	enforcement
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Drop packets of all s per their current ratei

Drawbacks:
1. Can’t make an already-

unfair allocation fair
2. CCAs may not be

responsive to loss signals

Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Penalize all s per their current ratei

Cebinae	taxation

1. Penalty box with non-loss
signals such as delay, ECN

Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Penalize all s per their taxed ratei

Cebinae	taxation

1. Penalty box with non-loss
signals such as delay, ECN

2. Collective redistribution
of bandwidth to flows⊥

Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Penalize all s with their taxed ratei

Cebinae	taxation

1. Penalty box with non-loss
signals such as delay

2. Collective redistribution
of bandwidth to flows⊥

Tax bottlenecked-flows exceeding
fair bandwidth share

Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

NOP

NOP

Penalize all s with their taxed ratei

Cebinae	taxation

1. Penalty box with non-loss
signals such as delay

2. Collective redistribution
of bandwidth to flows⊥

Tax bottlenecked-flows exceeding
fair bandwidth share Redistribute to non-

bottlenecked flows

Instantiation:	Cebinae	router	architecture

Port and flow
tracking states

⊤
Egress
cache

Instantiation:	Cebinae	router	architecture

 membership,
redistributed

rates

⊤

Port and flow
tracking states

⊤
Egress
cache

Shuffling
agent

Instantiation:	Cebinae	router	architecture

 membership,
redistributed

rates

⊤

Port and flow
tracking states

⊤

Taxation
actuator
signal

Egress
cache

Ingress
LBF

Shuffling
agent

Normal	operation

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier

1

Membership
Classification

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

2

LBF scheduling

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

2

Dynamic rate enforcement with
2 flow groups and FIFO queues

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

2

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

2

All buffer is
available at all times

Normal	operation

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

3

No should be taxed,
i.e., no false positives

⊥

Per-round	reconfiguration

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Packet
Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

ROTATE

Per-round	reconfiguration

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Packet
Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

ROTATE

Per-round	reconfiguration

Virtual pacing : guarantee no reordering and avoid
violation of draining deadline in the worst case

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Packet
Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

ROTATE

Per-round	reconfiguration

Atomic transactions: LBF states and egress caches

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Packet
Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

ROTATE

• Is Cebinae agnostic to CCAs?

• Can Cebinae mitigates unfairness (RTT, inter-CCA)?

• Can Cebinae move towards max-min fairness?

• Is Cebinae easy to configure?

• Does Cebinae resource usage scale?

• …

Implementation	and	evaluation
Hardware prototype on a Wedge100BF Tofino switch testbed and NS-3 module

Cebinae	mitigates	unfairness

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
oo

dp
ut

 [M
bp

s]

Flow index

FIFO Cebinae

16 TCP Vegas (0–15)
v.s. 1 NewReno (16)

Cebinae	mitigates	unfairness

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
oo

dp
ut

 [M
bp

s]

Flow index

FIFO Cebinae

16 TCP Vegas (0–15)
v.s. 1 NewReno (16)

Cebinae	mitigates	unfairness

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
oo

dp
ut

 [M
bp

s]

Flow index

FIFO Cebinae

16 TCP Vegas (0–15)
v.s. 1 NewReno (16)

Mitigates the skewed and persistent unfairness with
little efficiency impact: JFI from 0.093 to 0.984

Cebinae	mitigates	unfairness

128 NewReno
v.s. 2 BBR

Mitigating starvation

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14

C
D

F

Goodput [Mbps]

FIFO
Cebinae

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30 35 40

C
D

F

Goodput [Mbps]

FIFO
Cebinae

Preventing aggressiveness

128 NewReno
v.s. 4 Vegas

Cebinae	mitigates	unfairness

128 NewReno
v.s. 2 BBR

Mitigating starvation

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14

C
D

F

Goodput [Mbps]

FIFO
Cebinae

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30 35 40

C
D

F

Goodput [Mbps]

FIFO
Cebinae

Preventing aggressiveness

128 NewReno
v.s. 4 Vegas

Cebinae	mitigates	unfairness

128 NewReno
v.s. 2 BBR

Mitigating starvation

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14

C
D

F

Goodput [Mbps]

FIFO
Cebinae

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30 35 40

C
D

F

Goodput [Mbps]

FIFO
Cebinae

Preventing aggressiveness

128 NewReno
v.s. 4 Vegas

Cebinae	mitigates	unfairness

Cebinae	is	agnostic	to	CCAs

Summary
• No modifications nor coordinations to/with legacy host CCAs

• Real-time switch architecture serializing in-network compute modules

• COTS hardware and minimal resource requirements
• Two queues/priorities are sufficient

• Compatible with CCAs using both loss and non-loss signals
• Generic support of a wide range of Internet CCAs and environments

https://github.com/eniac/Cebinae

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Packet
Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

More	details
Mantis [SIGCOMM ’20]
Co-design data and control plane
for micro, reactive transactions

1 Cebinae [SIGCOMM ’22]
Co-opt data-path rate-limiters and control-path
reconfiguration for CCA unfairness mitigation

2

OrbWeaver [NSDI ’22]
Weave user and control packets for
near-free communication channel

3PrintQueue [SIGCOMM ’22]
Correlate packets at small and large
timescales for packet-level delay provenance

4

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf
https://liangchengyu.com/doc/cebinae-sigcomm2022.pdf
https://liangchengyu.com/doc/orbweaver-nsdi2022.pdf
https://liangchengyu.com/doc/printqueue-sigcomm2022.pdf

Q	&	A

Using	weaved	stream

Infer
Network

Conditions Consume
IDLE

Registers

Process
User

Produce
IDLE

Registers

Process
User

User packet IDLE packet
Prepare
IDLE Seed

IDLE seed packet

Traffic
Manager

EgressIngress

from packet
generator

1

2

3

Switch
CPU

τ = B100Gbps /MTU1500B = 120ns

t

100 Gbps

Optimal	value	of	τ

