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Out-of-control events
• Congestion collapse 
• TCP incast 
• Network hotspot 
• DoS attack 
• Network failure 
• Time drift 
• Bandwidth starvation 
• …

• Congestion control 
• Desynchronization 
• Load balancing 
• Defense policy 
• Failure mitigation 
• Clock synchronization 
• Fairness control 
• …

 Closed-loop control mechanisms
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Anatomy	of	network	control

System identification
Linear models? Blackbox? Source 
of disturbances or misbehaviors?

Actuation
Adaptive? Rate limiter config? 
Switch weights? Routes? Pacing? 

Measurement
Target signals? Granularity? 
Explicit or implicit? Synchronous?

Controller logic
Position? Distributed? Stability? 
Control interval time scale?
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Sustaining	network	control
Faster networks [Gbps] 
• Microscopic (O( )) events are prevalent 
• Challenging to sense, analyze, and react 

< 1 → 10 → 100 → 800 → …
μs

Traditional network control 
• Infrequent (O(100 )), asynchronous, and manualms

Towards fast, real-time, and automatic control at scale?
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Opportunities:	in-network	control

Specialization 
• 12.8 Tbps of throughput and beyond 
• Low overhead with additional processing logic 

Unique locational benefits
• Processing along packet path to reduce (tail) latency 
• Visibility into accurate network information

Once you’ve got a software platform where you can change its 
behavior, you can start introducing previously absurd-sounding 
ideas, including fanciful ideas of automatic, real-time, closed-

loop control of an entire network.” — Nick McKeown 
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Scalable	In-network	Fairness	Augmentation
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Using	IDLE	Cycles	in	Programmable	
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Networks	are	woven	from	packets
• A primary goal of computer networks: deliver packets 

• User application: video streaming, web browsing, file transfer… 
• Non-user application: control messages, probes about network 

state, keep alive heartbeats… 

• Often, two classes of traffic multiplex the same network
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When	introducing	a	new	in-band	application…	
To consume extra BW for fidelity (of the control application), or not to? 
• Time synchronization: clock-sync rate  clock precision 
• Failure detector: keep alive message frequency  detection speed 
• Congestion notification: signaling data/rate  measurement accuracy 
• In-band telemetry: INT postcard volume  post-mortem analysis 

→
→

→
→

Is the trade-off between fidelity and overhead necessary?

Can we coordinate at high-fidelity with a near-zero 
cost (to usable bandwidth, latency…)?



Idea: Weaved Stream
• Exploit every gap (O(100ns)) between user packets opportunistically 
• Inject customizable IDLE packets carrying information across devices

Can we coordinate at high-fidelity with a near-zero 
cost to usable bandwidth and latency?



Opportunity: 	gaps	are	prevalent< μs

• Application-level traffic patterns 
• TCP effects 
• Structural asymmetry 
• …



Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

t

100 Gbps

≤ 120 ns



Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

t

100 Gbps

[R1 Predictability] Interval between any two consecutive packets  ≤ τ

≤ 120 ns



Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

[R1 Predictability] Interval between any two consecutive packets   
[R2 Little-to-zero overhead] Not impact user packets or power draw 

≤ τ

t

100 Gbps

≤ 120 ns



Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

[R1 Predictability] Interval between any two consecutive packets   
[R2 Little-to-zero overhead] Not impact user packets or power draw 

≤ τ

t

100 Gbps

≤ 120 ns
Implement many in-network applications

(failure detection, clock sync, congestion notification…) 
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Abstraction:	weaved	stream
• Union of user and IDLE (injected) packets:

[R1 Predictability] Interval between any two consecutive packets   
[R2 Little-to-zero overhead] Not impact user packets or power draw 

≤ τ

t

100 Gbps

≤ 120 ns

Crazy	idea?
Extending IDLE characters to higher layers 

• Data plane packet generator 
• Replication engine 
• Data plane programmability 
• Flexible switch configuration (priorities, buffers…)



1. Switch data plane architecture 
2. Weaved stream generation 
3. OrbWeaver applications

Outline



RMT	switch	model
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Scalability: overwhelm packet generator capacity to satisfy target rate

Interference upon cross-traffic: throughput, latency, or loss of user traffic!
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original perf. of user packets
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PipelinePRE
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Packet
Buffer Multicast

Preventing	contention

 seed rate2/τ

 portsN

SEED > User
User > SEED

Rich configuration options for priorities and buffer management
• Zero impact of weaved stream predictability 
• Zero impact of user traffic throughput or buffer usage 
• Negligible impact of latency of user packets



Hardware prototype on a pair of Wedge100BF-32X Tofino switches
Implementation	and	evaluation
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Takeaway: Little-to-no impact of power draw, latency, or throughput 
while guaranteeing predictability of the weaved stream!



OrbWeaver	use	cases

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Self-healing failure detection

Packet forensics

Network queries

Network queries

Clock synchronization

Event-based  
network control

Latency  
localization

In-band telemetry



OrbWeaver	use	cases
Fine-grained network 
state inference [R1]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based  
network control

Latency  
localization

In-band telemetry

Self-healing failure detection Network queries



OrbWeaver	use	cases
Fine-grained network 
state inference [R1]

Free information 
dissemination [R2]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based  
network control

Latency  
localization

In-band telemetry

Self-healing failure detection Network queries



OrbWeaver	use	cases
Fine-grained network 
state inference [R1]

Free information 
dissemination [R2]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based  
network control

Latency  
localization

In-band telemetry

Self-healing failure detection Network queries



Example:	time	synchronization

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit 
t1, t2, t3 

Traditional two-way protocol



Example:	time	synchronization

Existing approaches for high precision 
• Require special hardware (such as DTP) 
• Require messaging overheads (such as DPTP)

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit 
t1, t2, t3 

Traditional two-way protocol



Example:	time	synchronization

Existing approaches for high precision 
• Require special hardware (such as DTP) 
• Require messaging overheads (such as DPTP) 

Challenges to achieve ns precision 
• Messaging frequency v.s. clock precision 
• Inaccuracies due to queueing delays

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3

t4

Transmit t1
Cache t1, t2

Transmit 
t1, t2, t3 

Traditional two-way protocol



Example:	time	synchronization

Existing approaches for high precision 
• Require special hardware (such as DTP) 
• Require messaging overheads (such as DPTP) 

Challenges to achieve ns precision 
• Messaging frequency v.s. clock precision 
• Inaccuracies due to queueing delays
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Data plane timestamps don’t capture 
the actual point of serialization
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OrbWeaver	redesign

Achieve same or better performance with close-to-zero overheads

Key ideas: 
1. Embed timestamp information in free IDLE packets [R2] 
2. Selective synchronization: infer queue delay from IDLE gaps and 

filter out unreliable messages [R1]
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Common approaches 
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Traditional uni-directional heartbeats
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Example:	failure	detection

Common approaches 
• Regular, high priority heartbeats 
• Conservative detection thresholds 

OrbWeaver approach 
• Exploit guaranteed predictability of max gap with 

weaved stream (e.g., 120 ns for 100GbE) [R1] 
• Exploit IDLE bandwidth to send flow event logs [R2]Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?

Push toward an instantaneous self-healing failure 
mitigation (with data plane reroute) of optional speed
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Summary

• Weaved stream abstraction to harvest IDLE cycles 
• Guarantee predictability with little-to-zero overhead 

• Generic support of a wide range of data plane applications for free 
• Don’t need to choose between coordination fidelity and bandwidth overhead

https://github.com/eniac/OrbWeaver  
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Fairness	enforcement	at	the	end	hosts?

Public Networks

Hard to deploy and upgrade the same CCA

Few incentives for self-policing mechanism



In-network	fairness	enforcement

Public 
Networks

Incentives often from operators of 
the in-network devices
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• Existing approaches suffer from limited practicalities 

• Assumption: specialized hardware for per-flow queues, end-host 
cooperation… 

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware 
• Constraints: e.g., # priorities, # queues, buffers

Challenging to strictly enforce FQ on each individual flow
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Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time 

• Penalize/redistribute BW from flows exceeding fair share to others 
• Binary classification of flows 

• Efficiently implement various subroutines (e.g., leaky-bucket filter)

• Zero modifications and coordinations to/with legacy host CCAs 
• Requirement of only two queues/priorities 
• Compatibility with CCAs operating on both loss and delay signals

Cebinae router architecture for binary taxation



1. Conceptual foundation for binary classification 

2. Cebinae’s taxation mechanism 

3. Evaluation

Outline
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An allocation 
of rates {ri}

Max-min	fairness

Implication: distributed verification of max-min fairness

For every flow  there exists at least one bottleneck link  where: 
(1)   is saturated
(2)   is among the largest flows sharing the link 
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Observation:
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Drop packets of all s per their current ratei

Drawbacks:
1. Can’t make an already-

unfair allocation fair  
2. CCAs may not be 

responsive to loss signals
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Each link  can determine the set of bottlenecked flows:    
If  non-saturated:
    All flows not bottlenecked 
Else, for each flow : 
    If  is among ’s largest rate(s) 
         is bottlenecked at  
    Else 
         is not bottlenecked at 

l
l

i
i l
i l

i l

NOP

NOP

Penalize all s with their taxed ratei

Cebinae	taxation

1. Penalty box with non-loss 
signals such as delay 

2. Collective redistribution 
of bandwidth to  flows⊥

Tax bottlenecked-flows exceeding 
fair bandwidth share Redistribute to non-

bottlenecked flows
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Per-round	reconfiguration

Virtual pacing : guarantee no reordering and avoid 
violation of draining deadline in the worst case
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Per-round	reconfiguration

Atomic transactions: LBF states and egress caches
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• Is Cebinae agnostic to CCAs? 

• Can Cebinae mitigates unfairness (RTT, inter-CCA)? 

• Can Cebinae move towards max-min fairness? 

• Is Cebinae easy to configure? 

• Does Cebinae resource usage scale? 

• …

Implementation	and	evaluation
Hardware prototype on a Wedge100BF Tofino switch testbed and NS-3 module
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Cebinae	mitigates	unfairness
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Mitigates the skewed and persistent unfairness with 
little efficiency impact: JFI from 0.093 to 0.984
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Cebinae	mitigates	unfairness



Cebinae	is	agnostic	to	CCAs



Summary
• No modifications nor coordinations to/with legacy host CCAs 

• Real-time switch architecture serializing in-network compute modules 

• COTS hardware and minimal resource requirements  
• Two queues/priorities are sufficient 

• Compatible with CCAs using both loss and non-loss signals  
• Generic support of a wide range of Internet CCAs and environments

https://github.com/eniac/Cebinae
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More	details
Mantis [SIGCOMM ’20]
Co-design data and control plane 
for micro, reactive transactions

1 Cebinae [SIGCOMM ’22]
Co-opt data-path rate-limiters and control-path 
reconfiguration for CCA unfairness mitigation

2

OrbWeaver [NSDI ’22]
Weave user and control packets for 
near-free communication channel

3PrintQueue [SIGCOMM ’22]
Correlate packets at small and large 
timescales for packet-level delay provenance

4

https://liangchengyu.com/doc/mantis-sigcomm2020.pdf
https://liangchengyu.com/doc/cebinae-sigcomm2022.pdf
https://liangchengyu.com/doc/orbweaver-nsdi2022.pdf
https://liangchengyu.com/doc/printqueue-sigcomm2022.pdf
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Using	weaved	stream

Infer 
Network 
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IDLE

Registers

Process 
User
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IDLE

Registers

Process 
User

User packet IDLE packet
Prepare 
IDLE Seed

IDLE seed packet

Traffic 
Manager

EgressIngress

from packet 
generator

1

2

3

Switch 
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τ = B100Gbps /MTU1500B = 120ns

t

100 Gbps

Optimal	value	of	τ


