ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

usenix usenix usenix
AAAAAAAAAAA

AVAILABLE

REPRODUCED

Beaver:
Practical Partial Snapshots for Distributed Cloud Services

Liangcheng (LC) Yu, Xiao Zhang, Haoran Zhang, John Sonchack, Dan R. K. Ports, and Vincent Liu

PRINCETON =-
UNIVERSITY

Microsoft Research

| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

—>
Message(-

]
receive States
. m

EE
EE

Computat:o
step

H
States

| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message

Computat:o
step

Snapshots are useful!

G

Network telemetry Distributed software Deadlock detection Checkpointing and
debugging failure recovery

Distributed snapshots 101

A classic class of distributed protocols to capture a causally consistent view of states across machines.

Distributed snapshots 101

A classic class of distributed protocols to capture a causally consistent view of states across machines.

In|t|at|on

m Taadin
Node O !‘ \gg d

‘ Snapshot

Node 1 Consistent cut triggering

Guarantee of causal consistency @

For any event e in the cut, ife’ — e (Lamport’s ‘happened before’), e’ is in the cut.

Are we done yet?

m
Node 0O

Consistent cut

Utopian: isolated ‘universe’ of nodes

Fundamental assumption:
The set of participants are closed under causal propagation.

@ Unfortunately, the assumption
mismatches the real-world scenarios!

he assumption mismatches the reality!

6%

Modul _ Instrumentation
. oduiar services =
constraints
o] My service
Utopian: isolated ‘universe’ of nodes] E O
$ \all
—
Costs and Hidden causality

overheads due to human

he assumption mismatches the reality!

@ Unrealistic to assume zero external interaction
Impractical to instrument all processes

Consequences?

Frontend
| An external node
Hidden causal relationship. ey < €,
.
[0 ®
o 1
Backend O s

e, In snapshot, yet ey not in snapshot!
o ta] [
2 Q

Backend 1 No longer consistent!

Nodes of interest

@ A single external node can break the guarantee!

Can we capture a causally consistent snapshot when
a subset of the broader system participates”

Beaver: practical partial snapshots

Out-group nodes
(Nodes without control)

@ The same causal consistency abstraction

'i@ Even when the target service interact with external,
— black box services (arbitrary number, scale, placement,

or semantics) via arbitrary pattern (including multi-hop

Arbitrary interactions propagation of causal dependencies)

B %. ® @ Zero impact over existing service traffic

That is, absence of blocking or any form of delaying
operations during distributed coordination
In-group nodes
(Nodes with VIPs of interest)

11

How Is it even possible without coordinating
machines external to those of interest?

'Q' Build a dam like a Beaver! ’

ldea 1:

Frontend

m
Backend O

Backend 1

Gateway (GW) indirection

e Out-group

’ Beaver’s gateway (GW) indirection:

1. Initiate GW to enter snapshot out-of-band
. 2. Mark inbound packets correspondingly

In-group

Gateway

Before: inconsistent cut at O (after e,)

With GW: consistent cut at O (before e,)

13

Theorem 1. With MGM, a partial snapshot Cpgy for PnC P
is causally consistent, that is, Ve € Cpap, if e.peP"Ae —e,
then €' € Cpar.

Proof. Lete.p = pf” ande'.p= pi-”. There are 3 cases:
1. Both events occur in the same process, i.e., i = j.
2. i # j and the causality relationship ¢’ — e is imposed
purely by in-group messages.
3. Otherwise, the causality relationship ¢ — e involves at
least one p € P

In cases (1) and (2), the theorem is trivially true using
identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e € Cparr) A (Fe’ — €) but (¢ ¢ Cpapr). With (3),
¢’ — e means that there must exist some e (at an out-group
process) satisfying ¢’ — e® — e. Now, because €’ ¢ Cparr,

we know e;f,.,, — €' or e;{.,, = ¢, that is, pg."’s local snapshot

happened bcjfore or duriné ¢'. Combined with the fact that the
gateway is the original initiator of the snapshot protocol, we
know that ey’ — ¢’ — e —e.

We can focus on a subset of the above causality chain:
e; — e. From the properties of the in-group snapshot proto-
col, e — e implies that e ¢ Cpap:.

This contradicts our original assumption that e € Cpgr,! [

Formal proof in paper

Formalizing idea 1: Monolithic Gateway Marking

Holds even if treating the out-group
nodes as black boxes

Sufficient to only observe the
Inbound messages

14

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking

How to instantiate the theoretical model in practice?

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

15

Challenge 1: instantiating GWs

@ Rerouting all inbound traffic through the GW is costly
Q Cloud data centers already place layer-4 load balancers (SLBs)

Internet

DEVE) GRS ielolie @ SLBs as a natural candidate for in-situ marking

VIR 1 VTP

16

Challenge 1: instantiating GWs

@ Rerouting all inbound traffic through the GW is costly
Q Cloud data centers already place layer-4 load balancers (SLBs)

Internet

5 e GEMEY EloE @ SLBs as a natural candidate for in-situ marking

@ Beaver is compatible with SLB’s partial visibility
. SLB VIP2

due to DSR (Direct Server Return)
Inter-VIP

17

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking

How to instantiate the theoretical model in practice?

Challenge 1 How to practically instantiate GW?
Idea 2: Exploit the unique location of existing SLBs

Challenge 2 How to handle asynchronous GWs?

18

Implications of muiltiple SLBs

Out-group
Frontend 1 J

\ f

B /

]
Backend 1 ‘&o

Backend O

&
Inconsistent™

o o o
==
[—]|[=]

[—=l|l=]|l=]

In-group

GW 1 hasn't initiated the new
snapshot mode to mark it,
triggering the violation

e, in snapshot, yet ¢, that leads to it is not, inconsistent!

19

Handling multiple GWSs: design space

How about blocking messages to ‘atomically’ trigger all SLBs?

A
2 ‘ Can we get both consistency

o _ and zero impact to service

«~ Blocking traffic (i.e., non-blocking)?

Correct but costly

Correctness

~ Non-blocking Q Optimistic Gateway Marking (OGM)
Consistency violation Intuition & formalism

g
Overhead ,
Mechanism

20

Challenge 2: handling multiple SLBs

Reflection: Beyond worst cases, when and how often does the violation occur?

Frontend

Time gap between
SLB initiation points

Out-group

In-group

Observation:

Causally relevant messages are rare!
GW—in-group—out-group—GW (external
causal chain)

Intuition: the resulting snapshot is consistent
1. if «% is large enough
2. or if % is ‘close’ enough

21

Theorem: if «» < «», the partial snapshot is consistent!

“—r =
+“—r =

Time gap between initiator-to-SLB one-way delays
Time to form an external causal chain (GW— in-group— out-group— GW)

Theorem 2. In a system with multiple asynchronous gateways,
let the wall-clock time of the first and last gateway snapshots
be e, = mings(eg'.t) and eg,,, = maxes(eg'.t), respec-
tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
8,8 €G, peP" and g € P*. If €5,,1 — Emnint < Tmins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (€ € Cparr) A (e’ — €) but (€' & Cparr). As before,
there must be some chain ¢’ — e® — e — e. Because ¢’ ¢
Cpart, We have e;;,, —é or e;j,, =¢/, that is, pj." must have

been triggered dirjectly or indjlfectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as . By the definition of T,;,, we have e8.f — e t>
Tmin > Cax-t — €gmin-1. Thus, at event ef, the gateway must
have already initiated the snapshot and will mark e8.m before
forwarding. This results in e ¢ C, "part> & contradiction! O

Formal proof in paper

Theorem: if «» < «», the partial snapshot is consistent!

<
-

Theorem 2. In a system with multiple asynchronous gateways,

Time gap between initiator-to-SLB one-way delays
B B . let the wall-clock time of the first and last gateway snapshots
Time to form an external causal chain (GW— in-group— out-group— GW) be €y = mins (65 and S~ man (€5, respec

tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
88 €G, pEP", and g€ P. If epy ot — €35t < Tonins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
ttlgSmJlart 0 The remlth earethre wth(3)

Observation: the condition holds in normal cases! =i o immon

there must be some ham — e —>eg—) B e¢
Cp , we hav e‘ﬂ,,—) p,-_ /, that is, pmuth

<% can approximate zero < /S relatively high “““ ;;;;nﬁiu;j

h a]:edymlt tzdth phtandwllma:k mbf
forwarding. This r¢ ultm & Cpart, a contradictiol D

« SLBs share the same region Formal proof in paper

> 3 trips through the fabric

* Proper placement of controller * Higher when the out-group is in
another DC or Internet

Optimistic execution in common cases

Optimistic Gateway /
Marking (OGM) \

Verification/rejection of
snapshots under worst cases

How does Beaver detect a snapshot violation?

Theorem: if «» < «», the partial snapshot is consistent

4¥» = Time gap between initiator-to-SLB one-way delays
4+ = [ime to form an external causal chain (GW— in-group— out-group— GW)

‘Q’ 1. Determine the lower bound of «» statically

2. Measure a safe upper bound for «» online using a single clock

@ False positives is fine as one can always retry!

24

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking

How to instantiate the theoretical model in practice?

Challenge 1 How to practically instantiate GW?
Idea 2: Exploit the unique location of existing SLBs

Challenge 2 How to handle asynchronous GWs?

Idea 3: Optimistic Gateway Marking (OGM)
» Optimistic execution in common cases
» Verification/rejection of snapshot under worst cases

25

More details about Beaver’s protocol...
* Synchronization-free snapshot veritication

» Supporting parallel snapshots

- Handling failures

- Handling packet loss, delay, and reordering

Implementation and evaluation

SLB-associated workflow

« Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch 54048-ON

e Core SLB functions in DPDK: ~1860 LoC

- Backend server functions in XDP and tc: ~1040 LoC O
="

Data center A

= . Layerswitches
Beaver protocol integration ,\
« Minimal logic: (1? 68 LoC for SLB DPDK data path logic (2) 102 eDarB /|\ % a
LoC for eBPF at in-group VMs So = =0
Topology

SLBs Controller Backend servers
Backend servers

(w/ in-group VIP)
« Support typical communication patterns

« Possible out-group locations: within the same DC, DC at a
different region, or on the Internet

« Scale up to 16 SLB servers and 1024 backend applications

27

Detalls in the paper:--

6000
5000
4000
3000
2000
1000

Snapshot frequency [Hz]

0 128 256 384 512 5A0 768 896 1024
of VMs

(a) w/o parallelism

Beaver supports fast snapshot rates J

Snapshot frequency [Hz]

300000
250000 -
200000 -
150000 -

100000 K k3 2 b e
::' Pt B |
4 .:..: :::‘: : : A
3351 oot Bossd b
3 1% B kXY

50000
0 3825963845126407688961024
of VMs
(b) w/ parallelism

OO
X
2ok

%5

S

D
)

X
i

>

&
X

K
o

.

0
.0

.

)
-

e

55

252585

(O
O
;0'0

%o

Y,
o4
o

.

b
*

e

o0 %%

>

o
‘0

2,
0

-
2
>

%

.
"%
e

L,

O
X0

o
TR

()
5%
X

>
o

55
&%
X

5252508
%
Z

®,
».
6%

0

X

o
TS

5%

%

2

55
%
)%
‘.
%

.
».
.
o

%
.

)
)
fole!

.
ol

CAR
.00,
A
.00
XX

0

X

O
250
%

1.2
14
0.8 A

) g

0.4 -w/o Beave.r x3
0.2 W/ Beaver =2

0

Normalzied throughput

20 40 60 80
Load [%]
(a) Stressed workloads

Normalized performance

1.2
1 T o g -2 T 8
8 B R
N .. s+ N
0.8 i §

o KBKE 5
0.6 Throughput w/o Beaver 3

0.4 Throughput w/ Beaver &3
' p99 latency w/o Beaver 2
0.2 99 latency w/ Beaver &
oL B R A
wixed-BW g jtensiVeg jprensive
Workload
(b) YCSB benchmarks

Beaver incurs zero impact

Effective snapshot rate [%]

o 8 &8 8 8

8

Beaver rejects snapshots infrequentIyJ

R R R R

$767070707474707070°0 7407000 000
VO eT e Y e e ee e

be
ke
ke
K
ke
ke
ke
K
ke
ke
ke
ke
ke
ke
ke
Ke
ke
ke
&
s

2768 5536 131072
Snapshot frequency [Hz]

w

Tmin 1
0.8 .
0.6 1
. i
04 inraDC ——
Inter- —
02 ! Internet
0 i i 4
10' 10? 10° 10* 10°
Time window [us]

Browser
client

GPU
backend
GPU
backend

Use cases: integration testing, service

Region B (out-group)

........

Replication

In-group %

........

|

analytics, deadlock detection, garbage
collection...

V.

108

28

Example: garbage collection for ephemeral storage

put/get/deref
> @ @ Ephemeral

storage

Backend

S

Backend In-group

Example: garbage collection for ephemeral storage

put/get/deref
> % @ Ephemeral

storage

Lambda life time

llllllllllllllllllllllllllll

e Sy -
S WA W A .

2

+1 -1
Backend In-group

30

Example: garbage collection for ephemeral storage

put/get/deref @ remera

@ storage
Lambda life time
)’1 :‘lllIllllllllllllllllll...:- Strawman
Invoke/ ""\"======frummmmnmnnnn 'Y
PR /f\ """ 'f \ Reference count = 0, unsafe recycle

'.\/' \/A\J \ decision of k!

=

_>%

get(k) deref(k) deref(k)

S AR W A 2

17 .
Backend X/x;’ X Reference count = 1, safe decision
S e 81,7 recognizing open reference to k

e’ +1e -1
Backend ’ %o In-group

31

Beaver: summary

Out-group nodes
(Nodes without control)

@ The first practical partial snapshot protocol

« Extending classic distributed snapshot
Arbitrary interactions

abstraction to partial deployment settings
% 5 5

In-group nodes
(Nodes with VIPs of interest)

* Incurring near-zero impact to existing traffic and
minimal changes

32

Beaver: summary

Out-group nodes
(Nodes without control)

@ The first practical partial snapshot protocol

« Extending classic distributed snapshot
Arbitrary interactions

abstraction to partial deployment settings
% 5 5
in-group nodes Questions?

(Nodes with VIPs of interest)

* Incurring near-zero impact to existing traffic and
minimal changes

33

