
1

Beaver:

Practical	Partial	Snapshots	for	Distributed	Cloud	Services

Liangcheng (LC) Yu, Xiao Zhang, Haoran Zhang, John Sonchack, Dan R. K. Ports, and Vincent Liu

2

Let’s	talk	about	snapshots
Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

Message
receive

Computation
step

States

States

States

States

3

Let’s	talk	about	snapshots
Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

Message
receive

Computation
step

States

States

States

States

Network telemetry Distributed software
debugging

Deadlock detection Checkpointing and
failure recovery

Snapshots are useful!

……

4

Distributed	snapshots	101
A classic class of distributed protocols to capture a causally consistent view of states across machines.

5

Distributed	snapshots	101
A classic class of distributed protocols to capture a causally consistent view of states across machines.

Guarantee of causal consistency
For any event in the cut, if (Lamport’s ‘happened before’), is in the cut.e e′￼→ e e′￼

Consistent cut

e0

e1

Node 0

Node 1

e4

e5

Initiation
e2

e3

Tagging

Snapshot
triggering

6

Are	we	done	yet?

Fundamental assumption:
The set of participants are closed under causal propagation.

Utopian: isolated ‘universe’ of nodes

Unfortunately, the assumption
mismatches the real-world scenarios!

Consistent cut

Node 0

Node 1

The	assumption	mismatches	the	reality!

Modular services
Instrumentation

constraints

Costs and
overheads

Hidden causality
due to human

My service

Utopian: isolated ‘universe’ of nodes

The	assumption	mismatches	the	reality!

Modular services
Instrumentation

constraints

Costs and
overheads

Hidden causality
due to human

My service

Utopian: isolated ‘universe’ of nodes

Unrealistic to assume zero external interaction

Impractical to instrument all processes

9

Nodes of interest

Backend 0

Backend 1

Consequences?

An external node
Frontend

e0

e2

e1

Hidden causal relationship: e0 ← e2

No longer consistent!

 in snapshot, yet not in snapshot!e2 e0

A single external node can break the guarantee!

10

Nodes of interest

Backend 0

Backend 1

Consequences?

An external node
Frontend

e0

e2

e1

Hidden causal relationship: e0 ← e2

No longer consistent!

 in snapshot, yet not in snapshot!e2 e0

A single external node can break the guarantee!

Can we capture a causally consistent snapshot when
a subset of the broader system participates?

11

Beaver:	practical	partial	snapshots

In-group nodes
(Nodes with VIPs of interest)

Out-group nodes
(Nodes without control)

Arbitrary interactions

The same causal consistency abstraction
Even when the target service interact with external,
black box services (arbitrary number, scale, placement,
or semantics) via arbitrary pattern (including multi-hop
propagation of causal dependencies)

Zero impact over existing service traffic
That is, absence of blocking or any form of delaying
operations during distributed coordination

12

Beaver:	practical	partial	snapshots

In-group nodes

Out-group nodes
(Nodes without control)

(Nodes with VIPs of interest)

Arbitrary interactions

The same causal consistency abstraction
Even when the target service interact with external,
black box services (arbitrary number, scale, or
semantics) via arbitrary pattern (including multi-hop
propagation of causal dependencies)

Zero impact over existing service traffic
Absence of blocking nor any form of delaying operations.

How is it even possible without coordinating
machines external to those of interest?

Build a dam like a Beaver!

13

In-group

Backend 0

Backend 1

Out-group
Frontend

Idea	1:	Gateway	(GW)	indirection

Beaver’s gateway (GW) indirection:
Gateway

1. Initiate GW to enter snapshot out-of-band
e0

e2

e1

2. Mark inbound packets correspondinglyConsistent!

Before: inconsistent cut at (after)

With GW: consistent cut at (before)

e2

e2

14

Formalizing	idea	1:	Monolithic	Gateway	Marking

Formal proof in paper

Holds even if treating the out-group
nodes as black boxes

Sufficient to only observe the
inbound messages

15

Key	ideas	in	Beaver

Idea 1: Indirection through Monolithic Gateway Marking

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

How to ensure consistency without coordinating external machines?

How to instantiate the theoretical model in practice?

16

Challenge	1:	instantiating	GWs

Rerouting all inbound traffic through the GW is costly

Cloud data centers already place layer-4 load balancers (SLBs)

Data center fabric

VIP 1 VIP 2

Inter-VIP

Internet

SLB VIP2SLB VIP1

SLBs as a natural candidate for in-situ marking

17

Challenge	1:	instantiating	GWs

Rerouting all inbound traffic through the GW is costly

SLBs as a natural candidate for in-situ marking

Beaver is compatible with SLB’s partial visibility
due to DSR (Direct Server Return)

Cloud data centers already place layer-4 load balancers (SLBs)

Data center fabric

VIP 1 VIP 2

Inter-VIP

Internet

SLB VIP2SLB VIP1

18

Key	ideas	in	Beaver

Idea 1: Indirection through Monolithic Gateway Marking

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

Idea 2: Exploit the unique location of existing SLBs

How to ensure consistency without coordinating external machines?

How to instantiate the theoretical model in practice?

19

In-group

Backend 0

Backend 1

Out-group
Frontend

Implications	of	multiple	SLBs

GW 0

GW 1
GW 1 hasn’t initiated the new
snapshot mode to mark it,
triggering the violation

e2

Inconsistent!

 in snapshot, yet that leads to it is not, inconsistent!e2 e0

e0

e1

20

Consistency violation

C
or

re
ct

ne
ss

Overhead

Blocking
Correct but costly

Non-blocking

How about blocking messages to ‘atomically’ trigger all SLBs?

Handling	multiple	GWs:	design	space

? Can we get both consistency
and zero impact to service
traffic (i.e., non-blocking)?

Optimistic Gateway Marking (OGM)
Intuition & formalism

Mechanism

21

In-group

Backend 0

Backend 1

Out-group
Frontend

GW 0

GW 1

Reflection: Beyond worst cases, when and how often does the violation occur?

Intuition: the resulting snapshot is consistent

1. if is large enough
2. or if is ‘close’ enough

Time gap between
SLB initiation points

Challenge	2:	handling	multiple	SLBs

Observation:

Causally relevant messages are rare!

GW in-group out-group GW (external
causal chain)

→ → →

22

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent

1. if is large enough
2. or if is ‘close’ enough

e′￼2

Challenge	2:	handling	multiple	SLBs
Reflection: beyond worst cases, how often does the violation occur?

Observation:

Causally relevant messages are rare!

GW in-group out-group GW (external
causal chain)

→ → →

e′￼0

e′￼1

Time gap between
SLB initiation points

Theorem: if < , the partial snapshot is consistent!

Formal proof in paper

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

23

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent

1. if is large enough
2. or if is ‘close’ enough

e′￼2

Challenge	2:	handling	multiple	SLBs
Reflection: beyond worst cases, how often does the violation occur?

Observation:

Causally relevant messages are rare!

GW in-group out-group GW (external
causal chain)

→ → →

e′￼0

e′￼1

Time gap between
SLB initiation points

Theorem: if < , the partial snapshot is consistent!

Formal proof in paper

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

Observation: the condition holds in normal cases!
 can approximate zero

• SLBs share the same region

• Proper placement of controller

 is relatively high

• trips through the fabric

• Higher when the out-group is in

another DC or Internet

≥ 3

Optimistic Gateway
Marking (OGM)

Optimistic execution in common cases

Verification/rejection of
snapshots under worst cases

24

How	does	Beaver	detect	a	snapshot	violation?

Theorem: if < , the partial snapshot is consistent

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

1. Determine the lower bound of statically

2. Measure a safe upper bound for online using a single clock

False positives is fine as one can always retry!

25

Key	ideas	in	Beaver

Idea 1: Indirection through Monolithic Gateway Marking

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

Idea 2: Exploit the unique location of existing SLBs

Idea 3: Optimistic Gateway Marking (OGM)
• Optimistic execution in common cases

• Verification/rejection of snapshot under worst cases

How to ensure consistency without coordinating external machines?

How to instantiate the theoretical model in practice?

26

Key	ideas	in	Beaver
How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

Idea 2: Exploit the unique location of existing SLBs

Idea 3: Optimistic Gateway Marking (OGM)
• Optimistic execution in common cases

• Verification/rejection of snapshot under worst cases

More details about Beaver’s protocol…
• Synchronization-free snapshot verification

• Supporting parallel snapshots

• Handling failures

• Handling packet loss, delay, and reordering

• …

27

Implementation	and	evaluation
SLB-associated workflow

• Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch S4048-ON

• Core SLB functions in DPDK: ~1860 LoC

• Backend server functions in XDP and tc: ~1040 LoC

Topology

• Support typical communication patterns

• Possible out-group locations: within the same DC, DC at a

different region, or on the Internet

• Scale up to 16 SLB servers and 1024 backend applications

Beaver protocol integration

• Minimal logic: (1) 68 LoC for SLB DPDK data path logic (2) 102

LoC for eBPF at in-group VMs

Layer-3 switches

Internet

SLBs Controller Backend servers
(w/ in-group VIP)

Client

Data center A

1

Backend servers

Data center B

2

3

28

Details	in	the	paper…

Beaver supports fast snapshot rates

Beaver incurs zero impact

Region B (out-group)
Post-upload

Post-storage

Notifier

Region A (in-group)
Notifier

Post-storage
Case 1

Replication

Case 2

Pseudo-dependency

Storage A

Storage B

<latexit sha1_base64="ZHlhKowLL3qGcSH28nDbj++WOjE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ie0Q8lkMm1okhmSjFCGfoUbF4q49XPc+Tem01lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbud+94kqzWL5YKYJ9QUeSRYxgo2VHgfcRkM89IbVmlt3c6BV4hWkBgVaw+rXIIxJKqg0hGOt+56bGD/DyjDC6awySDVNMJngEe1bKrGg2s/yhWfozCohimJlnzQoV39PZFhoPRWBTQpsxnrZm4v/ef3URNd+xmSSGirJ4qMo5cjEaH49CpmixPCpJZgoZndFZIwVJsZ2VLEleMsnr5LORd27rDfuG7XmTVFHGU7gFM7Bgytowh20oA0EBDzDK7w5ynlx3p2PRbTkFDPH8AfO5w9pvZAq</latexit>

�1

<latexit sha1_base64="jPK9ZxvhCyGEEsDEshQf5ISOajU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUUl0W3bisYB/SDiWTybShSWZIMkIZ+hVuXCji1s9x59+YtrPQ1gOBwznnkntPkHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2BNOZO0bZjhtJcoikXAaTeY3M797hNVmsXywUwT6gs8kixiBBsrPQ64jYZ4WBuWK27VXQCtEy8nFcjRGpa/BmFMUkGlIRxr3ffcxPgZVoYRTmelQappgskEj2jfUokF1X62WHiGLqwSoihW9kmDFurviQwLracisEmBzVivenPxP6+fmujaz5hMUkMlWX4UpRyZGM2vRyFTlBg+tQQTxeyuiIyxwsTYjkq2BG/15HXSqVW9RrV+X680b/I6inAG53AJHlxBE+6gBW0gIOAZXuHNUc6L8+58LKMFJ585hT9wPn8Aa0GQKw==</latexit>

�2

put(k) get(k) deref(k) deref(k)

In-group

Beaver
partial

snapshot

Inconsistent
traditional
snapshot

Lambda
life time

InvokeBrowser
client

GPU
backend

GPU
backend In-group

Use cases: integration testing, service
analytics, deadlock detection, garbage

collection…

Beaver rejects snapshots infrequently

29

Example:	garbage	collection	for	ephemeral	storage

Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

30

Example:	garbage	collection	for	ephemeral	storage

put(k)

+1

Invoke

get(k)

+1

deref(k)

-1

deref(k)

Lambda life time

-1
Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

31

Example:	garbage	collection	for	ephemeral	storage

put(k)

+1

Invoke

get(k)

+1

deref(k)

-1

deref(k)

Lambda life time

-1
Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

Strawman
Reference count = 0, unsafe recycle
decision of !k

Reference count = 1, safe decision
recognizing open reference to k

The first practical partial snapshot protocol

• Extending classic distributed snapshot

abstraction to partial deployment settings

• Incurring near-zero impact to existing traffic and

minimal changes

32

Beaver:	summary

In-group nodes

Out-group nodes
(Nodes without control)

(Nodes with VIPs of interest)

Arbitrary interactions

The first practical partial snapshot protocol

• Extending classic distributed snapshot

abstraction to partial deployment settings

• Incurring near-zero impact to existing traffic and

minimal changes

33

Beaver:	summary

In-group nodes

Out-group nodes
(Nodes without control)

(Nodes with VIPs of interest)

Arbitrary interactions

Questions?

