
Cuttlefish: A Fair, Predictable Execution
Environment for Cloud-hosted Financial Exchange

1

Liangcheng (LC) Yu, Prateesh Goyal, Ilias Marinos, and Vincent Liu

Advances in Financial Technologies (AFT) 2025

MPMPMP GW

GW

CES
MPMPMP

Central Exchange Server

Fairness, in on-premise infrastructure

Equal-length
cables

L1 fan-out
switches

2

Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

Co-location in the same physical facility

Market Participants

On-premise exchange infrastructure

Rising interest in cloud-hosted exchange services

3

System scalability and resource elasticity
Rise of remote work
Cost reduction and ease of management
…

4

Rising interest in cloud-hosted exchange services

System scalability and resource elasticity
Rise of remote work
Cost reduction and ease of management
… 4

Cloud infrastructure can
introduce unfairness!

Variances in network latencies

MP

MP

MPMP

MPMP

5

Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

RB

RB

Variant latencies
Different paths, congestion…

VM

VM

VM

Unfairness!

Central Exchange Server

CES
Market Participants

Release
Buffers

Cloud
region

6

Efforts toward communication fairness
Clock synchronization
(CloudEx, HotOS ‘21)

RB

RB

CES

MP trelease
trelease + deadline

MP RB

RB

CES

MP

MP
RT2

RT1
RT1

RT2

Logical clock based on response time (RT)
(DBO, SIGCOMM ’23)

Doesn’t handle MP-RB latency variancesHard to pre-determine the deadline

Perfect clock synchronization is hard Limited to trigger-point based trades

7

…cloud execution can also incur unfairness!
Other sources of unfairness: noisy neighbors, thermal conditions of the processors…

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

D8s_v3 E16ds_v4
F32s_v2 F72s_v2E

xe
cu

tio
n
 t
im

e
 d

iff
e
re

n
ce

 [
µ

s]

Identical programs running
on same types of VMs

MPa
VM

MPb
VM

CES

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

8

Synchrony is challenging, in real time
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous
delivery is impossible!

Δti

Δtj
For the same code:
Δti ≠ Δtj

D(j, x)

D(i, x) For the same data:
D(i, x) ≠ D(j, x)

Computation can be non-
deterministic at

(thermal condition, resource
utilization…)

O(μs)

t

t

t

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay

Cuttlefish: A Fair, Predictable Execution Environment

Equal cloud networks
Equal execution hardware
…

Abstraction

Can we eliminate variations that come from the
cloud infrastructure?

9

Outline

Conceptual foundation

Implementing virtual time overlay

Evaluation

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

Let’s reflect on underlying model today…
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Simultaneous delivery
is infeasible!

Δti

Δtj

Execution time can be
non-deterministic at

 (thermal condition, resource
utilization…)

O(μs)

t

t

t

D(j, x)

D(i, x)

For the same data:
D(i, x) ≠ D(j, x)δ

For the same code:
Δti ≠ Δtjδ

10

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

Let’s reflect on underlying model today…
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Simultaneous delivery
is infeasible!

Δti

Δtj

Execution time can be
non-deterministic at

 (thermal condition, resource
utilization…)

O(μs)

t

t

t

D(j, x)

D(i, x)

For the same data:
D(i, x) ≠ D(j, x)δ

For the same code:
Δti ≠ Δtjδ

11

Communication and computation synchrony
are challenging in real-time

Virtual time
CES

MPi

MPj

G(x)

vt

vt

t

Releasing data to MPs at the
same virtual delivery time

Communication synchrony:

Virtual time
CES

MPi

MPj

t

vt

vt

12

G(x)

Δvti

Δvtj
For the same code:
Δvti = Δvtj

Let’s try virtual time domain …
Virtual time unit some equal amount of work≡

D(j, x)

D(i, x) For the same data:
D(i, x) = D(j, x) = vtdelivery

vtdeliveryvtdelivery

Advancing virtual time per
‘actual amount of work’

Execution synchrony:

13

Outline

Conceptual foundation

Implementing virtual time overlay

Evaluation

14

Implementing virtual time abstraction
Instantiate as virtual cycles of a platform-agnostic IR/VMvt

Account and control the advancement of virtual cycles

Worker pool

Controller Controller Controller

OB & CES

(,vcx) (,vci)

Auditing log

External msg

GW

Cuttlefish platform

Programming
interface

1

Runtime
execution

3

Virtual cycle
tracking

2

User programming abstraction

15

#include <cuttlefish_user.h>

int mp_handler(subscribed_context_t* data) {
 if ((*data) > 100) {
 // Sell
 trade_t trade = 1;
 submit_trade(&trade);
 } else if ((*data) < 10) {
 // Buy
 trade_t trade = 2;
 submit_trade(&trade);
 }
 map_update(0, &trade);
 return 0;
}

White-list set of
extensible service APIs

Just-in-time trade
submission

Narrow KV store API (e.g., lookup,
update) for stateful invocationsTrading decision(s)

Input market data, external
message…

Online trading algorithm
algm* = argmaxalgmprofit(algm)

MP code lifetime

16

eBPF frontend
+ MP handler helper

Cuttlefish

Verifier

2-tier compilation with the platform agnostic IR:
Track virtual cycle (fairly) in eBPF, but execute (efficiently) on native HW target

Instrumentation
Memory

relocation

Virtual cycle
tracking

Inline helper

mu.c

clang -target bpf

Native compiler
mu.o

JIT translator

x64 binary

r0 rax
r1 rdi

…
→
→

0000000000000000 <u_handler>:
 0: 85 00 00 00 0b 00 00 00 call 11
 1: 7b 0a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r0
 2: bf a2 00 00 00 00 00 00 r2 = r10
 3: 07 02 00 00 f8 ff ff ff r2 += -8
 4: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
 6: 85 00 00 00 0a 00 00 00 call 10
 7: bf 01 00 00 00 00 00 00 r1 = r0
 8: 67 01 00 00 20 00 00 00 r1 <<= 32
 9: 77 01 00 00 20 00 00 00 r1 >>= 32
 10: b7 00 00 00 01 00 00 00 r0 = 1
 11: 55 01 01 00 00 00 00 00 if r1 != 0 goto +1 <LBB0_2>
 12: b7 00 00 00 00 00 00 00 r0 = 0

0000000000000068 <LBB0_2>:
 13: 95 00 00 00 00 00 00 00 exit

How to track and advance virtual time cycles?

17

eBPF asm

Break into basic blocks for batch updates of
JMP source, JMP destination, trade submission call

vti

; movabs r11, <vc address>
49 BB F0 DE BC 9A 78 56 34 12
; add qword ptr [r11], 2
49 81 03 02 00 00 00

Native HW asm

vti + = Δvt

 maintained by
execution runtime

{vti}

Emit native machine code (2 x64 instr.) at the epilogue during JIT translation
Dummy trade/heartbeat for large blocks
Update the offsets for the (direct) JMP instructions

x64

18

More details:
Virtual time assignment algorithm
Fault tolerance
Handling external messages
…

Simultaneous data delivery in virtual time

CES

(data x, vtx)

(data x, vtx) RB MPMPMP
{vti}

RB MPMPMP
{vti}

Release at vtx

Release at vtx

Virtual time assignment

Virtual time assignment is important for efficiency!
• What happens upon a latency spike?
• What if some processor executions get slower?

CES

19

Runtime execution workflow

Submit trade
(trade, vti)

Trade buffer

h

t

h

t

h

t

 vti = max(vti, vt x
d)

Affined worker threads

mu_mp3.o

mu_mp2.o

mu_mp1.o

Lock-free
SPSC rings

Command buffer

h

t

h

t

h

t

Command
dispatcher

thread

KV store VT counter

R / W

N
et

w
or

k
co

m
m

un
ic

at
io

n
st

ac
kSubscribed

data (x, vtx
d)

Runtime executor (‘scale up’)

Aggregator
thread
(polling,
sorting,

batching)

Matching
Engine

Ordering
Buffer

,
heartbeat=

{(trade, vti)}
min{vti}

20

Outline

Conceptual foundation

Implementing virtual time overlay

Evaluation

21

Comparison with existing ordering schemes
Ordering mechanisms

Response Time (RT) based ordering
FIFO ordering

Set up
Two MPs on two VMs

 executes additional primitive IR
instructions than
Market data rate: every

MPa N
MPb

≈ 100μs

Metric
Fairness ratio

 0

 20

 40

 60

 80

 100

1 100 10000

100.00 100.00 100.00

1.50 1.42

21.20

51.64

76.32

99.81

Cuttlefish
FIFO

RT

F
a
ir
n

e
ss

 r
a
tio

 [
%

]

MP instruction count difference

Same VM type

 0

 20

 40

 60

 80

 100

1 100 10000

100.00 100.00 100.00

0.02 0.01 0.012.50 3.35

99.82

Cuttlefish
FIFO

RT

MP instruction count difference

Different VM types

22

Performance cost for fairness
Set up

100 MPs on 10 VMs
Market data rate: every
CX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz

≈ 100μs

More details:
Execution throughput and latencies under processor
disparities
Virtual time instrumentation overhead
Recovery under failures

+2.15 +3.08 +3.54 +12.61 +22.1

Summary

23

Cuttlefish: a fair, predictable cloud-hosted exchange platform
Abstracting out variances in cloud communication and execution hardware
An efficient implementation runnable on commercial cloud

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay

24

…something I am excited about

Transistor scaling is hitting walls

……

Rise of domain-specific accelerators

…something I am excited about

25

Transistor scaling is hitting walls

……

Rise of domain-specific accelerators

Uncover the hidden intelligence of
modern hardware

…today!

A complementary approach:
build smarter systems

26

Uncovering hidden potential of memory
controllers in modern cloud servers
Under preparation

Harvesting IDLE cycles in programmable networks
for in-band control functions
OrbWeaver (NSDI ’22)

Case studies

27

Uncovering hidden potential of memory
controllers in modern cloud servers
Under preparation

Harvesting IDLE cycles in programmable networks
for in-band control functions
OrbWeaver (NSDI ’22)

Case studies

Liangcheng (LC) Yu, John Sonchack, and Vincent Liu

• A primary goal of computer networks: delivery packets

28

Networks are woven from packets

• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…

29

Networks are woven from packets

• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…
• Non-user application: control messages, probes about network

state, keep alive heartbeats…

30

Networks are woven from packets

• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…
• Non-user application: control messages, probes about network

state, keep alive heartbeats…

• Often, two classes of traffic multiplex the same network

31

Networks are woven from packets

To cost extra bandwidth for efficacy, or not?

32

When introducing an in-band control function…

To cost extra bandwidth for efficacy, or not?

33

When introducing an in-band control function…

Time synchronization
Clock-sync rate
clock precision

↔

Failure detection
Heartbeat frequency
detection speed

↔

Congestion notification
Probe data/rate
measurement accuracy

↔

In-band telemetry
INT postcard volume
post-mortem analysis

↔

To cost extra bandwidth for efficacy, or not?

34

When introducing an in-band control function…

Time synchronization
Clock-sync rate
clock precision

↔

Failure detection
Heartbeat frequency
detection speed

↔

Congestion notification
Probe data/rate
measurement accuracy

↔

In-band telemetry
INT postcard volume
post-mortem analysis

↔

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

To cost extra bandwidth for efficacy, or not?

35

When introducing an in-band control function…

Time synchronization
Clock-sync rate
clock precision

↔

Failure detection
Heartbeat frequency
detection speed

↔

Congestion notification
Probe data/rate
measurement accuracy

↔

In-band telemetry
INT postcard volume
post-mortem analysis

↔

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

• Exploit every gap () between user packets opportunistically
• Inject customizable IDLE packets carrying information across devices

O(100ns)
Idea: Weaved Stream

Opportunity: gaps are prevalent< μs

36

Inter-packet gaps

Root causes?
• Uncertainties in application load patterns (e.g., burstiness)
• Conservative resource provisioning for peak usages
• Bottlenecks at CPU processing vs network BW
• TCP effects
• Structural asymmetry
• …

37

Abstraction: weaved stream
Union of user AND IDLE (injected) packets

τ = B100Gbps /MTU1500B = 120ns

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Near-zero impact to user packets or power draw

38

Abstraction: weaved stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Implement many in-network functions
(failure detection, clock sync, congestion notification…)

for free!

39

Abstraction: weaved stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Extending IDLE characters to higher layers
• Data plane packet generator
• Replication engine
• Data plane programmability
• Flexible switch configuration (priorities, buffers…)

Crazy idea?

1. RMT switch data plane architecture

2. Implementing weaved stream abstraction

3. OrbWeaver applications

40

OrbWeaver: outline

 portsN

Ing. Arbiter

…
Parser

Parser

Ingress
Pipeline

Rx MAC

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

41

RMT switch architecture

101…001

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer rateN/τ

 portsN

42

Strawman: blind packet generation

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer rateN/τ

Predictability even there is no user traffic

 portsN

43

Strawman: blind packet generation

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

 portsN

 rateN/τ

44

Problems with blind packet generation

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

 portsN

 rateN/τ

45

Problems with blind packet generation

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate1/τ

 portsN

46

Problem #1: scalability
Solution: seed stream amplification

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate1/τ

 portsN

Monopolize usage and waste PRE packet-level BW!

47

Problem #2: cross-traffic contention at PRE

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 portsN

 seed rate2/τ

Selective filtering
• Per-egress port bitmap indicating

packet presence in the last cycle
• If not, replicate an IDLE to the port

τ/2

48

Problem #2: cross-traffic contention at PRE
Solution: amplify seed stream on-demand

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate2/τ

 portsN

SEED > User
User > SEED

49

Problem: other contention points
Solution: leverage rich configuration options for priorities and buffer management

• Zero impact of weaved stream predictability
• Zero impact of user traffic throughput or buffer usage
• Negligible impact of latency of user packets

Hardware prototype on a pair of Wedge100BF-32X Tofino switches

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000
O

bs
er

ve
d

in
te

rv
al

 [n
s]

Packet

Target rate
Maximum

50

Implementation and evaluation

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

P
D

F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

P
D

F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

Hardware prototype on a pair of Wedge100BF-32X Tofino switches

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000
O

bs
er

ve
d

in
te

rv
al

 [n
s]

Packet

Target rate
Maximum

51

Implementation and evaluationTakeaway: Little-to-no impact of power draw, latency, or throughput
while guaranteeing predictability of the weaved stream!

Power draw

Latency Scalability

Predictability

52

OrbWeaver use cases

[R1 Predictability] Infer network state at fine-granularity!→

↔
 ≤ τ

[R2 Little-to-zero overhead] Inject information using IDLE cycles!→

53

OrbWeaver use cases

[R1 Predictability] Infer network state at fine-granularity!→

↔
 ≤ τ

[R2 Little-to-zero overhead] Inject information using IDLE cycles!→

Performance aware routing

Flowlet load imbalance

Microburst detection Consistent replicasHeader compression

Packet forensics Clock synchronization

Latency
localization In-band telemetry

Self-healing failure detection

Common approach:
Periodic, high priority heartbeats

Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?

54

Example: failure detection

Fundamentally indistinguishable:
message drop or actual failure?

Empirically, use conservative detection thresholds

OrbWeaver pushes the detection speed to its limits

Before: Weak guarantee of the messaging channel
After: Guaranteed maximum inter-packet gap (120ns for 100 GbE)

55

Failure detection with OrbWeaver

Detection time of emulated failures using optical
attenuators under varying link speeds

 0

 0.5

 1

 1.5

10G 25G 100G

D
e

te
ct

io
n

 t
im

e
 [

µ
s] BFD 105 µs

0.0

0.2

0.4

0.6

0.8

100MB 1GB

C
om

p.
 T

im
e

[s
ec

] Original
OrbWeaver

BFD

Instantaneous self-healing failure mitigation
when combined with data-plane reroute

Near-zero
impact!

1

3

5

 0 1 2 3 4

< 1µs

#
 P

a
ck

e
t

/
µ

s

Time [µs]

Original Dropped Reroute

56

OrbWeaver: summary

• Weaved stream abstraction to harvest IDLE cycles
• Sufficient for many in-band control functions
• Don’t need to choose between coordination fidelity and bandwidth overhead

• Weaved stream abstraction to harvest IDLE cycles
• Sufficient for many in-band control functions
• Don’t need to choose between coordination fidelity and bandwidth overhead

• Implementable on today’s RMT switches
• Push the utilization of IDLE cycles to its limits
• Guarantee predictability with little-to-zero overhead

57

OrbWeaver: summary

58

Uncovering hidden potential of memory
controllers in modern cloud servers
Under preparation

Harvesting IDLE cycles in programmable networks
for in-band control functions
OrbWeaver (NSDI ’22)

Case studies

Daniël Trujillo, Liangcheng (LC) Yu, Stefan Saroiu, and Alec Wolman

59

A view of memory address translation
Virtual address

Physical address

Page table
(Software
programmable)

Media address

Memory
controller

Fixed, 1-to-1 mapping

60

Virtual address

Physical address

Page table
(Software
programmable)

Media address

Memory
controller

Reprogrammable
mappings!

Memory address translation tomorrow

+
%
−

/

61

Reprogramming DRAM maps is hard

One of the whiteboard tutorials I gave

62

Our secret sauce
• Unlocked BIOS
• Reverse-engineered MC on modern cloud servers
• Bus monitor

63

Virtual address

Physical address

Page table
(Software
programmable)

Media address

Memory
controller

Reprogrammable
mappings!

Memory address translation tomorrow

+
%
−

/

Implemented novel primitives improving cloud server
efficiency and security!

Illustrative examples:
OS can choose among memory interleaving maps

Intelligent DRAM refreshes for power savings

…

64

What’s next?

https://jobs.careers.microsoft.com/global/en/job/1886648/
Research-Intern---MSR-Software-Hardware-Co-design

