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Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

Co-location in the same physical facility

Market Participants

On-premise exchange infrastructure



Rising interest in cloud-hosted exchange services
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System scalability and resource elasticity 
Rise of remote work  
Cost reduction and ease of management 
…
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Rising interest in cloud-hosted exchange services

System scalability and resource elasticity 
Rise of remote work  
Cost reduction and ease of management 
… 4

Cloud infrastructure can 
introduce unfairness!



Variances in network latencies
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Outbound: simultaneous release of market data stream 
Inbound: trade processing in the order of its arrival

RB

RB

Variant latencies
Different paths, congestion…

VM

VM

VM

Unfairness!

Central Exchange Server

CES
Market Participants

Release 
Buffers

Cloud 
region
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Efforts toward communication fairness
Clock synchronization 
(CloudEx, HotOS ‘21)

RB

RB

CES

MP trelease
trelease + deadline

MP RB

RB

CES

MP

MP
RT2

RT1
RT1

RT2

Logical clock based on response time (RT) 
(DBO, SIGCOMM ’23)

Doesn’t handle MP-RB latency variancesHard to pre-determine the deadline

Perfect clock synchronization is hard Limited to trigger-point based trades
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…cloud execution can also incur unfairness!
Other sources of unfairness: noisy neighbors, thermal conditions of the processors…
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Synchrony is challenging, in real time
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous 
delivery is impossible!

Δti

Δtj
For the same code: 
Δti ≠ Δtj

D( j, x)

D(i, x) For the same data: 
D(i, x) ≠ D( j, x)

Computation can be non-
deterministic at   

(thermal condition, resource 
utilization…)

O(μs)

t

t

t

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay

Cuttlefish: A Fair, Predictable Execution Environment

Equal cloud networks 
Equal execution hardware 
…

Abstraction 

Can we eliminate variations that come from the 
cloud infrastructure?
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Outline

Conceptual foundation

Implementing virtual time overlay 

Evaluation 
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Let’s reflect on underlying model today…
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Simultaneous delivery 
is infeasible!

Δti

Δtj

Execution time can be 
non-deterministic at 

  (thermal condition, resource 
utilization…)
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For the same data:
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For the same code: 
Δti ≠ Δtjδ
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Communication and computation synchrony 
are challenging in real-time



Virtual time
CES
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Releasing data to MPs at the 
same virtual delivery time

Communication synchrony:

Virtual time
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G(x)

Δvti

Δvtj
For the same code: 
Δvti = Δvtj

Let’s try virtual time domain …
Virtual time unit  some equal amount of work≡

D( j, x)

D(i, x) For the same data: 
D(i, x) = D( j, x) = vtdelivery

vtdeliveryvtdelivery

Advancing virtual time per 
‘actual amount of work’

Execution synchrony:
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Outline

Conceptual foundation 

Implementing virtual time overlay

Evaluation 
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Implementing virtual time abstraction
Instantiate  as virtual cycles of a platform-agnostic IR/VMvt

Account and control the advancement of virtual cycles

Worker pool

Controller Controller Controller

OB & CES

( ,vcx) ( ,vci)

Auditing log

External msg

GW

Cuttlefish platform

Programming 
interface

1

Runtime 
execution

3

Virtual cycle 
tracking

2



User programming abstraction
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#include <cuttlefish_user.h>

int mp_handler(subscribed_context_t* data) {  
    if ((*data) > 100) {
        // Sell
        trade_t trade = 1;
        submit_trade(&trade);
    } else if ((*data) < 10) {
        // Buy
        trade_t trade = 2;
        submit_trade(&trade);
    }
    map_update(0, &trade);
    return 0;  
}

White-list set of 
extensible service APIs

Just-in-time trade 
submission

Narrow KV store API (e.g., lookup, 
update) for stateful invocationsTrading decision(s)

Input market data, external 
message…

Online trading algorithm
algm* = argmaxalgmprofit(algm)



MP code lifetime
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eBPF frontend 
+ MP handler helper

Cuttlefish

Verifier

2-tier compilation with the platform agnostic IR:
Track virtual cycle (fairly) in eBPF, but execute (efficiently) on native HW target

Instrumentation
Memory

relocation

Virtual cycle 
tracking

Inline helper

mu.c

clang -target bpf

Native compiler
mu.o

JIT translator

x64 binary

r0 rax
r1 rdi

…
→
→



0000000000000000 <u_handler>:
       0: 85 00 00 00 0b 00 00 00 call 11
       1: 7b 0a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r0
       2: bf a2 00 00 00 00 00 00 r2 = r10
       3: 07 02 00 00 f8 ff ff ff r2 += -8
       4: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00   r1 = 0 ll
       6: 85 00 00 00 0a 00 00 00 call 10
       7: bf 01 00 00 00 00 00 00 r1 = r0
       8: 67 01 00 00 20 00 00 00 r1 <<= 32
       9: 77 01 00 00 20 00 00 00 r1 >>= 32
      10: b7 00 00 00 01 00 00 00 r0 = 1
      11: 55 01 01 00 00 00 00 00 if r1 != 0 goto +1 <LBB0_2>
      12: b7 00 00 00 00 00 00 00 r0 = 0

0000000000000068 <LBB0_2>:
      13: 95 00 00 00 00 00 00 00 exit

How to track and advance virtual time cycles?
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eBPF asm

Break into basic blocks for batch updates of  
JMP source, JMP destination, trade submission call

vti

; movabs r11, <vc address>
49 BB F0 DE BC 9A 78 56 34 12
; add qword ptr [r11], 2
49 81 03 02 00 00 00

Native HW asm

vti + = Δvt

 maintained by 
execution runtime

{vti}

Emit native machine code (2 x64 instr.) at the epilogue during JIT translation 
Dummy trade/heartbeat for large blocks 
Update the offsets for the (direct) JMP instructions

x64
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More details: 
Virtual time assignment algorithm 
Fault tolerance 
Handling external messages 
…

Simultaneous data delivery in virtual time

CES

(data x, vtx)

(data x, vtx) RB MPMPMP
{vti}

RB MPMPMP
{vti}

Release at  vtx

Release at  vtx

Virtual time assignment

Virtual time assignment is important for efficiency! 
• What happens upon a latency spike? 
• What if some processor executions get slower?



CES
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Runtime execution workflow

Submit trade 
(trade, vti)

Trade buffer
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Outline

Conceptual foundation 

Implementing virtual time overlay 

Evaluation
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Comparison with existing ordering schemes
Ordering mechanisms

Response Time (RT) based ordering 
FIFO ordering

Set up
Two MPs on two VMs 

 executes  additional primitive IR 
instructions than  
Market data rate: every 

MPa N
MPb

≈ 100μs

Metric
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Performance cost for fairness
Set up

100 MPs on 10 VMs 
Market data rate: every  
CX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz

≈ 100μs

More details: 
Execution throughput and latencies under processor 
disparities 
Virtual time instrumentation overhead 
Recovery under failures

+2.15 +3.08 +3.54 +12.61 +22.1



Summary
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Cuttlefish: a fair, predictable cloud-hosted exchange platform 
Abstracting out variances in cloud communication and execution hardware 
An efficient implementation runnable on commercial cloud

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay
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…something I am excited about

Transistor scaling is hitting walls

……

Rise of domain-specific accelerators



…something I am excited about
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Transistor scaling is hitting walls

……

Rise of domain-specific accelerators

Uncover the hidden intelligence of 
modern hardware

…today!

A complementary approach: 
build smarter systems
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Uncovering hidden potential of memory 
controllers in modern cloud servers 
Under preparation

Harvesting IDLE cycles in programmable networks 
for in-band control functions 
OrbWeaver (NSDI ’22)

Case studies
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Uncovering hidden potential of memory 
controllers in modern cloud servers 
Under preparation

Harvesting IDLE cycles in programmable networks 
for in-band control functions 
OrbWeaver (NSDI ’22)

Case studies

Liangcheng (LC) Yu, John Sonchack, and Vincent Liu



• A primary goal of computer networks: delivery packets
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Networks are woven from packets



• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…
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Networks are woven from packets



• A primary goal of computer networks: delivery packets 
• User application: video streaming, web browsing, file transfer… 
• Non-user application: control messages, probes about network 

state, keep alive heartbeats…
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Networks are woven from packets



• A primary goal of computer networks: delivery packets 
• User application: video streaming, web browsing, file transfer… 
• Non-user application: control messages, probes about network 

state, keep alive heartbeats… 

• Often, two classes of traffic multiplex the same network

31

Networks are woven from packets



To cost extra bandwidth for efficacy, or not?

32

When introducing an in-band control function…



To cost extra bandwidth for efficacy, or not?
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When introducing an in-band control function…

Time synchronization
Clock-sync rate  
clock precision

↔

Failure detection
Heartbeat frequency  
detection speed

↔

Congestion notification
Probe data/rate  
measurement accuracy

↔

In-band telemetry
INT postcard volume  
post-mortem analysis 

↔



To cost extra bandwidth for efficacy, or not?
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When introducing an in-band control function…

Time synchronization
Clock-sync rate  
clock precision

↔

Failure detection
Heartbeat frequency  
detection speed

↔

Congestion notification
Probe data/rate  
measurement accuracy

↔

In-band telemetry
INT postcard volume  
post-mortem analysis 

↔

Can we coordinate at high-fidelity with a near-zero 
cost (to usable bandwidth, latency…)?



To cost extra bandwidth for efficacy, or not?
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When introducing an in-band control function…

Time synchronization
Clock-sync rate  
clock precision

↔

Failure detection
Heartbeat frequency  
detection speed

↔

Congestion notification
Probe data/rate  
measurement accuracy

↔

In-band telemetry
INT postcard volume  
post-mortem analysis 

↔

Can we coordinate at high-fidelity with a near-zero 
cost (to usable bandwidth, latency…)?

• Exploit every gap ( ) between user packets opportunistically 
• Inject customizable IDLE packets carrying information across devices

O(100ns)
Idea: Weaved Stream



Opportunity:  gaps are prevalent< μs
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Inter-packet gaps

Root causes?
• Uncertainties in application load patterns (e.g., burstiness) 
• Conservative resource provisioning for peak usages 
• Bottlenecks at CPU processing vs network BW 
• TCP effects 
• Structural asymmetry 
• …
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Abstraction: weaved stream
Union of user AND IDLE (injected) packets

τ = B100Gbps /MTU1500B = 120ns

[R1 Predictability] Interval between any two consecutive packets  ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Near-zero impact to user packets or power draw
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Abstraction: weaved stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets  ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Implement many in-network functions
(failure detection, clock sync, congestion notification…) 

for free! 
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Abstraction: weaved stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets  ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Extending IDLE characters to higher layers 
• Data plane packet generator 
• Replication engine 
• Data plane programmability 
• Flexible switch configuration (priorities, buffers…)

Crazy idea?



1. RMT switch data plane architecture 

2. Implementing weaved stream abstraction 

3. OrbWeaver applications

40

OrbWeaver: outline



 portsN

Ing. Arbiter

…
Parser

Parser

Ingress 
Pipeline

Rx MAC

Egress 
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer
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RMT switch architecture

101…001



Ing. Arbiter

…
Parser

Parser

Parser

Ingress 
Pipeline

Rx MAC

Packet 
Generator

Egress 
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer rateN/τ

 portsN

42

Strawman: blind packet generation
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…
Parser

Parser
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Ingress 
Pipeline

Rx MAC

Packet 
Generator

Egress 
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer rateN/τ

Predictability even there is no user traffic

 portsN
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Strawman: blind packet generation
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Packet
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Problems with blind packet generation

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports
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Problems with blind packet generation

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports



Ing. Arbiter

…
Parser

Parser

Parser

Ingress 
Pipeline

Rx MAC

Packet 
Generator

Egress 
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate1/τ

 portsN
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Problem #1: scalability
Solution: seed stream amplification
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Parser
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 portsN

Monopolize usage and waste PRE packet-level BW!
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Problem #2: cross-traffic contention at PRE



Ing. Arbiter
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Parser

Parser

Parser

Ingress 
Pipeline

Rx MAC

Packet 
Generator

Egress 
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 portsN

 seed rate2/τ

Selective filtering
• Per-egress port bitmap indicating 

packet presence in the last  cycle 
• If not, replicate an IDLE to the port

τ/2
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Problem #2: cross-traffic contention at PRE
Solution: amplify seed stream on-demand



Ing. Arbiter

…
Parser

Parser

Parser

Ingress 
Pipeline

Rx MAC

Packet 
Generator

Egress 
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate2/τ

 portsN

SEED > User
User > SEED
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Problem: other contention points
Solution: leverage rich configuration options for priorities and buffer management

• Zero impact of weaved stream predictability 
• Zero impact of user traffic throughput or buffer usage 
• Negligible impact of latency of user packets



Hardware prototype on a pair of Wedge100BF-32X Tofino switches
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Implementation and evaluation
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Implementation and evaluationTakeaway: Little-to-no impact of power draw, latency, or throughput 
while guaranteeing predictability of the weaved stream!

Power draw

Latency Scalability

Predictability
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OrbWeaver use cases

[R1 Predictability]  Infer network state at fine-granularity!→

↔
 ≤ τ

[R2 Little-to-zero overhead]  Inject information using IDLE cycles!→
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OrbWeaver use cases

[R1 Predictability]  Infer network state at fine-granularity!→

↔
 ≤ τ

[R2 Little-to-zero overhead]  Inject information using IDLE cycles!→

Performance aware routing

Flowlet load imbalance

Microburst detection Consistent replicasHeader compression

Packet forensics Clock synchronization

Latency  
localization In-band telemetry

Self-healing failure detection



Common approach:
Periodic, high priority heartbeats

Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?
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Example: failure detection

Fundamentally indistinguishable: 
message drop or actual failure?

Empirically, use conservative detection thresholds



OrbWeaver pushes the detection speed to its limits

Before: Weak guarantee of the messaging channel 
After: Guaranteed maximum inter-packet gap (120ns for 100 GbE)

55

Failure detection with OrbWeaver

Detection time of emulated failures using optical 
attenuators under varying link speeds
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OrbWeaver: summary

• Weaved stream abstraction to harvest IDLE cycles 
• Sufficient for many in-band control functions 
• Don’t need to choose between coordination fidelity and bandwidth overhead



• Weaved stream abstraction to harvest IDLE cycles 
• Sufficient for many in-band control functions 
• Don’t need to choose between coordination fidelity and bandwidth overhead 

• Implementable on today’s RMT switches 
• Push the utilization of IDLE cycles to its limits 
• Guarantee predictability with little-to-zero overhead
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OrbWeaver: summary



58

Uncovering hidden potential of memory 
controllers in modern cloud servers 
Under preparation

Harvesting IDLE cycles in programmable networks 
for in-band control functions 
OrbWeaver (NSDI ’22)

Case studies

Daniël Trujillo, Liangcheng (LC) Yu, Stefan Saroiu, and Alec Wolman
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A view of memory address translation
Virtual address

Physical address

Page table
(Software 
programmable)

Media address

Memory 
controller

Fixed, 1-to-1 mapping
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Virtual address

Physical address

Page table
(Software 
programmable)

Media address

Memory 
controller

Reprogrammable 
mappings!

Memory address translation tomorrow

+
%
−

/
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Reprogramming DRAM maps is hard

One of the whiteboard tutorials I gave
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Our secret sauce
• Unlocked BIOS  
• Reverse-engineered MC on modern cloud servers 
• Bus monitor
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Virtual address

Physical address

Page table
(Software 
programmable)

Media address

Memory 
controller

Reprogrammable 
mappings!

Memory address translation tomorrow

+
%
−

/

Implemented novel primitives improving cloud server 
efficiency and security!

Illustrative examples:
OS can choose among memory interleaving maps

Intelligent DRAM refreshes for power savings

…
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What’s next?

https://jobs.careers.microsoft.com/global/en/job/1886648/
Research-Intern---MSR-Software-Hardware-Co-design


