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Fairness, in on-premise infrastructure

~

On-premise exchange infrastructure
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» Outbound: simultaneous release of market data stream
» Inbound: trade processing in the order of its arrival
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Rising interest in cloud-hosted exchange services

CI0O JOURNAL
’
A fully cloud-hosted exchange is coming Nasdaq to Move Markets to Amazon’s
but for now, one piece at a time Cloud
Execs from Google, LSEG and NYSE discuss how exchanges are beginning ti
leverage the true potential of the cloud. The exchange says a phased migration to Amazon Web Services will
market
LSEG and Microsoft launch 10-year strategic partnership for next- —
generation data and analytics and cloud infrastructure solutions;
Microsoft to make equity investment in LSEG through acquisition of
shares
Narermier 11209 | Micrentt Nows Canter Microsoft signs $28B cloud deal with .ondon
N e Stock Exchange Group
Google Invests $1 Billion in Exchange
Giant CME, Strikes Cloud Deal e
Tie-up gives Google’s cloud arm a prize client in financial services
By Alexander Osipovich (Follow] ure lou nc work it e 2 int 0 el e ot anlyios o,
Updated Nov. 4, 2021 1:48 pm ET
S — — —
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System scalability and resource elasticity
Rise of remote work
Cost reduction and ease of management
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Cloud infrastructure can
introduce unfairness!



Variances in network latencies
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—fforts toward communication fairness

Clock synchronization Logical clock based on response time (RT)
(CloudEx, HotOS 21) (DBO, SIGCOMM °23)
MP g MP RE;I %
\\”‘x\trelease® ><
toease T deadline u
z @ s CES @T% 52,& CES
S~ /
MP | RB e~ MP RB e~

@ Perfect clock synchronization is hard @ Limited to trigger-point based trades

@Hard to pre-determine the deadline @ Doesn’t handle MP-RB latency variances



---cloud execution can also incur unfairness!

» Other sources of unfairness: noisy neighbors, thermal conditions of the processors...
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Can we eliminate variations that come from the
cloud infrastructure?

-\Q"Cuttlefish: A Fair, Predictable Execution Environment

Cuttlefish Virtual Time Overlay

» Equal cloud networks
Abstraction € ® Equal execution hardware




Outline

» Conceptual foundation
» Implementing virtual time overlay

» Evaluation



Let's reflect on underlying model today -

G(x) Wall clock time

CES T 1 “} ! C
\\:\5‘: For the same data: A
' D(i.x) # D(j. x)
MP, Ll 3 1 CfE
\D(l, X) Image source: https://haydenjames.io/the-two-generals-problem/
|
MP; P 1 Simultaneous delivery
/ D(j, x) ic i i
Js Is Infeasible!
G(x) Wall clock time
CES e :
i i . a1 Forthe same code: : :
-V R At Execution time can be
MP, : o P ¢ non-deterministic at
| |
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Let’s reflect on underlvinag model today:-:

Communication and computation synchrony
are challenging in real-time
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Let’s try virtual time domain -+

Virtual time unit = some equal amount of work

G(x) Virtual time

"'ibt

-$ VI

1 For the same code:

: Avt; = Avi;
- VI
Virtual time
o . &
thelivery
VIdelivery n‘b
o VI
D(i, x) For the same data:
D(l’ X) = D(]’ X) - thelivery

-§ vt

D(j, x)

Execution synchrony:

Advancing virtual time per
‘actual amount of work’

Communication synchrony:

Releasing data to MPs at the
same virtual delivery time
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Outline

» Conceptual foundation
» Implementing virtual time overlay

» Evaluation
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Implementing virtual time abstraction

\ Instantiate vz as virtual cycles of a platform-agnostic IR/VM

Q Account and control the advancement of virtual cycles

-----------
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Cuttlefish platform
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User programming abstraction

Input market data, external
message...

!

Online trading algorithm

algm* = argmaxalgmprofit(algm)

.

Trading decision(s)

#include <cuttlefish user.h> White-list set of
extensible service APIs
int mp handler(subscribed context t* data) {
if ((*data) > 100) {
// Sell
trade t trade = 1;
submit_ trade(&trade);
} else if ((*data) < 10) {
// Buy

trade t trade = 2; Just-in-time trade

submit trade(&trade); submission
}
map update(0, &trade);
return 0; Narrow KV store API (e.g., lookup,

} update) for stateful invocations
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MP code lifetime

@ eBPF frontend Cuttlefish
+ MP handler helper Instrumentation
Memory rgqrgx
mu.c =
aeBPF relocation reTres
. . mu.o
Native compiler Verifier _ JIT translator
Inline helper
clang -target bpf x64 binary
Virtual cycle

@ tracking

2-tier compilation with the platform agnostic IR:
Track virtual cycle (fairly) in eBPF, but execute (efficiently) on native HW target
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How to track and advance virtual time cycles?

eBPF asm
0000000.666666666 handter
0: 85 00 00 00 Ob 00 00 00 call 11
1: 7b 0a £8 ff 00 00 00 00 *(u64 *)(rl0 - 8) = ro0
2: bf a2 00 00 00 00 00 00 r2 = rlo Native HW asm
3: 07 02 00 00 f8 ff ff ff r2 += -8
. 18 01..00.00..00.00.00.00..00.00.00..00..00.00.00_00 rl.=_0_1
6: 85 00 00 00 Oa 00 00 00 call 10 ; movabs rll, <vc address>
78 bf 01 00 00 00 00 00 0O rl = r0 49 BB FO DE BC 9A 78 56 34 12
8: 67 01 00 00 20 00 00 00 rl <<= 32
9: 77 01 00 00 20 00 00 00  rl >>= 32 ; add gword ptr [rll], 2
10: b7 00 00 00 01 00 00 00 ro =1 49 81 03 02 00 00 OO
11: 55 01 01 00 00 00 00 00 if rl != 0 goto +1 <LBBO 2> X64
(12 b7 00 00 00 00 00 00 00 r0o = 0 -
vt + = Avt
0000000000000068 <LBBO 2>:
(13: 95 00 00 00 00 00 00 00 exit

* Break into basic blocks for batch updates of vi;
» JMP source, JMP destination, trade submission call

{vt;} maintained by
execution runtime

» Emit native machine code (2 x64 instr.) at the epilogue during JIT translation
» Dummy trade/heartbeat for large blocks
» Update the offsets for the (direct) JMP instructions

17



Simultaneous data delivery in virtual tme

Virtual time assignment X Release at vt*
Veops jata X, vt ) RB ,
’ 9 ()
x+z-i:5 S fﬂ;i $ 0- (-) MP
x+3 4 {vtl.}
x+2 .
x+} $
x N X
/ Virtual cycle evolution £ data X, V[x) RBRelease at vt >
Virtual time assignment is important for efficiency! = MP
e \What happens upon a latency spike? vt}

e \What if some processor executions get slower?

More details:

» Virtual time assignment algorithm
» Fault tolerance

» Handling external messages
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Runtime execution workflow

Command buffer
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Outline

» Conceptual foundation
» Implementing virtual time overlay

» Evaluation
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Comparison with existing ordering schemes

Same VM type
Ordering mechanisms 100 100.00 100.00 100.00 99.81
» Response Time (RT) based ordering £ 80 76.32
» FIFO ordering € 60 o1 04 | o
% 40 RT o
g 21.20
Set up £ ERYE
’ TWO MPS on tWO VMS MI13 instruction1g(())unt differ1eon0c(:)§
» MP,, executes N additional primitive IR
instructions than MPy, Different VM types
* Market data rate: every =~ IOO,MS 100 100.00 100.00 100.00  99.82
] 80
Metric 50 I
. . CuttI'(:eIfllzscr;%
» Fairness ratio 40 BT 3¢
20
0 0.022:50 0.01335 0.01
1 100 10000

MP instruction count difference



Performance cost for fairness

Set up

» 100 MPs on 10 VMs

» Market data rate: every =~ 100us

» CX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz

Latency (us)
avg. p50 p90 p99 p99.9

MaxRTT 52.04 47.74 49.95 55.85 144.2
Cuttlefish 54.19 50.82 53.49 68.46 166.3

+2.15 +3.08 +3.54 +12.61 +22.1

More details:

» Execution throughput and latencies under processor
disparities

» Virtual time instrumentation overhead

» Recovery under failures
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Summary

Cuttlefish: a fair, predictable cloud-hosted exchange platform
» Abstracting out variances in cloud communication and execution hardware
» An efficient implementation runnable on commercial cloud

Cuttlefish Virtual Time Overlay
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A complementary approach:
build smarter systems

Uncover the hidden intelligence of
modern hardware

...today!



Case studies

SDT quads

¢ SUT quads

Harvesting IDLE cycles in programmable networks
for in-band control functions

OrbWeaver (NSDI "22)

Uncovering hidden potential of memory
controllers in modern cloud servers

Under preparation
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Case studies

Harvesting IDLE cycles in programmable networks
for in-band control functions

OrbWeaver (NSDI '22)
Liangcheng (LC) Yu, John Sonchack, and Vincent Liu

M PRINCETON
UNIVERSITY

SDT quads

¢ SUT quads




Networks are woven from packets

* A primary goal of computer networks: delivery packets



Networks are woven from packets

* A primary goal of computer networks: delivery packets
. video streaming, web browsing, file transfer...



Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...
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Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...

« Often, two classes of traffic multiplex the same network

31



When introducing an in-band control function:--

50
@* To cost extra bandwidth for efficacy, or not?
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When introducing an in-band control function:--

50
4" " To cost extra bandwidth for efficacy, or not?

Time synchronization
Clock-sync rate <
clock precision

o 1111 Failure detection

o :::: Heartbeat frequency <

A— detection speed

Congestion notification

8___ Probe data/rate <

measurement accuracy

In-band telemetry
ﬁﬁﬁﬁﬁ | INT postcard volume <
— post-mortem analysis

33



Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?



Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

', Ildea: Weaved Stream

-Q- . Exploit every gap (O(100ns)) between user packets opportunistically
* Inject customizable IDLE packets carrying information across devices



Opportunity: < us gaps are prevalent

1001\

on 'o°) Inter-packet gaps ﬁ

Root causes?

» Uncertainties in application load patterns (e.g., burstiness)
« Conservative resource provisioning for peak usages
Bottlenecks at CPU processing vs network BW

TCP effects

Structural asymmetry

36



Abstraction: weaved stream @(

Union of user AND IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets < 7

T = Bioocrps!MTU 5008 = 12005

[R2 Little-to-zero overhead] Near-zero impact to user packets or power draw

37



Implement many in-network functions
(failure detection, clock sync, congestion notification...)

for free!



Crazy idea?

Extending IDLE characters to higher layers

e Data plane packet generator

e Replication engine

e Data plane programmability

e Fexible switch configuration (priorities, buffers...)



OrbWeaver: outline

1. RMT switch data plane architecture
2. Implementing weaved stream abstraction

3. OrbWeaver applications
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Strawman: blind packet generation
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Strawman: blind packet generation

Rx MAC Tx MAC 4

| Parser Queueing &

!E Egress Dvdiren b
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Predictability even there is no user traffic @

43



Problems with blind packet generation

Rx MAC Tx MAC 4
| Parser Queueing & NortS
Q e
, | Packet | |
N/t rate +| Parser || ©.
Packet | Parser \
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

44



Problems with blind packet generation

Rx MAC

- Parser

N/t rate I [Py - -
Packet P Parser
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!
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Problem #1: scalability

Solution: seed stream amplification

Rx MAC Tx MAC 4

| Parser \ _ N ports

Ll Parser i
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Problem #2: cross-traffic contention at PRE

Rx MAC Tx MAC 4

| Parser \
5
Q

Ll Parser i

Parser /

Monopolize usage and waste PRE packet-level BW!

1/7 seed rate

Packet
Generator
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Problem #2: cross-traffic contention at PRE

Solution: amplify seed stream on-demand

Rx MAC Tx MAC 4

| Parser \

| |
: Ingress | , |l Packet

— = 5 7| Multicast =i
Ll Parser )

= = d - a- b
9 3 PR S I
h-
5o Sy
| PSS a3
e
N
o v
Y
- N S TN 3 S sl a5 ~ Op *
P T F G N D e o Crue T B
‘-

Queueing &
cheduling

2/7 seed rate

Packet
Generator

Parser

Selective filtering
* Per-egress port bitmap indicating
packet presence in the last 7/2 cycle
* |f not, replicate an IDLE to the port
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Problem: other contention points

Solution: leverage rich configuration options for priorities and buffer management

Rx MAC Tx MAC 4

Queueing & N ports

Acheduling

- Parser

2/7 seed rate | parseriirBummsimmbsnmsmmm e S = WWS.WM Lo

\vg

Packet

P Parser
Generator

User > SEED

SEED > User

» Zero impact of weaved stream predictability
« Zero impact of user traffic throughput or buffer usage
« Negligible impact of latency of user packets
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Implementation and evaluation
Hardware prototype on a pair of Wedge 100BF-32X Tofino switches
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Wattage [normalized]

Queuing time [ns]

Takeaway: Little-to-no impact of power draw, latency, or throughput

while guaranteeing predictability of the weaved stream!
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OrbWeaver use cases

= =
S S

NN ]
<>

<7

[R1 Predictability] — Infer network state at fine-granularity!

[R2 Little-to-zero overhead] — Inject information using IDLE cycles!

52



OrbWeaver use cases

Performance aware routin J Latency _
g ocalivation In-band telemetry J
Header CompressionJ Microburst detection J Consistent replicas J

[R1 Predictability] — Infer network state at fine-granularity!

[R2 Little-to-zero overhead] — Inject information using IDLE cycles!
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Example: failure detection

Node A Node B
‘I am alive’ @ _
‘I am alive’ @ _
I am alive’ @ _
T2 suspect

Common approach:
Periodic, high priority heartbeats

Fundamentally indistinguishable:
message drop or actual failure?

Empirically, use conservative detection thresholds
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Failure detection with OrbWeaver @

Before: Weak guarantee of the messaging channel

After: Guaranteed maximum inter-packet gap (120ns for 100 GbE)

g J: ----------- BFD 10° ;Is- " Original = Dropped x Reroute = 'g' 0.8 1 = Orb\(/)vg%:cgl
q_,15{ S (0000000000 0XXeemmmm| 9 06 | - BFD W
E = =5 <1lus 2 '
+ (O]
S S a4l N F 047 Near-zero
8o - 4 & 02 - impact!
3 = 1 8 | el
O L I I I : : : 0.0 T T
10G 25G 100G 0 1 2 3 4 100MB 1GB
Time [us]
Detection time of emulated failures using optical Instantaneous self-healing failure mitigation
attenuators under varying link speeds when combined with data-plane reroute

OrbWeaver pushes the detection speed to its limits
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OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
« Sufficient for many in-band control functions

« Don't need to choose between coordination fidelity and bandwidth overhead
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OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
« Sufficient for many in-band control functions

« Don't need to choose between coordination fidelity and bandwidth overhead

* Implementable on today's RMT switches
« Push the utilization of IDLE cycles to its limits
« Guarantee predictability with little-to-zero overhead



Case studies

Uncovering hidden potential of memory
controllers in modern cloud servers

Under preparation
Daniél Trujillo, Liangcheng (LC) Yu, Stefan Saroiu, and Alec Wolman

H B Massachusetts ..
I I Institute of B

Technology Microsoft Research
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A view of memory address translation

Virtual address

— |
Page table
N—T N (Software
programmable)
Physical address
C [ )
@ Memory Fixed, 1-to-1 mapping
controller Media address

( ([ o m}
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Memory address translation tomorrow

Virtual address

)

Page table
N—T Y (Software

programmable)

Physical address
C () )
@ Memory eprogrammable
appings!
controller ping Media address

T

( L
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Reprogramming DRAM maps is hard

One of the whiteboard tutorials | gave




Our secret sauce

« Unlocked BIOS
* Reverse-engineered MC on modern cloud servers
« Bus monitor
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Memory address translation tomorrow

Implemented novel primitives improving cloud server
efficiency and security!

lllustrative examples:

OS can choose among memory interleaving maps

Intelligent DRAM refreshes for power savings
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What's next?
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Redmond, Washington, United States
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