
L i a n g c h e n g (L C) Y u

Designing	Efficient	Distributed	Systems	Primitives	by	
Exploiting	Data	Center	Network	Characteristics

1

R e s e a r c h e r @ M i c r o s o f t R e s e a r c h

G u e s t l e c t u r e , C S 1 3 4 : D i s t r i b u t e d S y s t e m s
M a y 2 2 , 2 0 2 5

2

About	me

I am a researcher at Microsoft Research Redmond
I work on computer systems and networking

…with a focus on improving the efficiency of modern cloud networks

This course is about distributed systems…

Image source: https://haydenjames.io/the-two-generals-problem/

Classic distributed systems Cloud data centers

3

What concepts come to mind when you think
about distributed systems?

4

A	conceptual	model	of	distributed	systems

Message
send

Message
receive

Computation
step

A distributed system is a collection of autonomous computing
elements that appears to its users as a single coherent system.

—Maarten van Steen and Andrew S. Tanenbaum

Process

Network

5

What if we map this model
to cloud data centers?

6

What	about	cloud	data	centers?

Image source: https://datacenters.microsoft.com/globe/explore

200+ data centers across 65+ regions

7

What	about	cloud	data	centers?

Image source: https://www.fs.com/blog/what-is-data-center-architecture-2929.html

8

Emerging application requirements

Massive-scale data centers

How to design distributed systems primitives,
efficiently?

Data centers are not arbitrary systems!
• Regularities in network topology
• Emerging hardware capabilities
• Specific application requirements
• …

…exploit data center characteristics and
rethink the classic design principles!

What	about	cloud	data	centers?

9

Case	studies

Distributed snapshots

Beaver (OSDI 2024)
Practical Partial Snapshots for Distributed Cloud Services

Synchronous coordination

Cuttlefish (WIP)
Cuttlefish: A Fair, Predictable Execution Environment for Cloud-hosted
Financial Exchange

Failure detection

OrbWeaver (NSDI 2022)
Using IDLE Cycles in Programmable Networks for Opportunistic Coordination

10

Beaver:	
Practical	Partial	Snapshots	for	Distributed	Cloud	Services

Liangcheng (LC) Yu, Xiao Zhang, Haoran Zhang, John Sonchack, Dan R. K. Ports, and Vincent Liu

11

Let’s	talk	about	snapshots
Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

Message
receive

Computation
step

States

States

States

States

12

Let’s	talk	about	snapshots
Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

Message
receive

Computation
step

States

States

States

States

Network telemetry Distributed software
debugging

Deadlock detection Checkpointing and
failure recovery

Snapshots are useful!

……

13

Classic	distributed	snapshots
e.g., Chandy-Lamport (TOCS 1985)

14

Classic	distributed	snapshots
e.g., Chandy-Lamport (TOCS 1985)

Guarantee of causal consistency
For any event in the cut, if (Lamport’s ‘happened before’), is in the cut.e e′ → e e′

Consistent cut

e0

e1

Node 0

Node 1

e4

e5

Initiation
e2

e3

Tagging

Snapshot
triggering

15

Classic	snapshots	operate	in	an	isolated	universe

Fundamental assumption:
The set of participants are closed under causal propagation.

Utopian: isolated ‘universe’ of nodes

Unfortunately, the assumption
mismatches the real-world scenarios!

Consistent cut

Node 0

Node 1

The	assumption	rarely	matches	reality!

Modular services
Instrumentation

constraints

Costs and
overheads

Hidden causality
due to human

My service

Utopian: isolated ‘universe’ of nodes

The	assumption	mismatches	the	reality!

Modular services
Instrumentation

constraints

Costs and
overheads

Hidden causality
due to human

My service

Utopian: isolated ‘universe’ of nodes

Unrealistic to assume zero external interaction
Impractical to instrument all processes

18

Nodes of interest

Backend 0

Backend 1

Consequences?

An external node
Frontend

e0

e2

e1

Hidden causal relationship: e0 ← e2

No longer consistent!

 in snapshot, yet not in snapshot!e2 e0

A single external node can break the guarantee!

19

Nodes of interest

Backend 0

Backend 1

Consequences?

An external node
Frontend

e0

e2

e1

Hidden causal relationship: e0 ← e2

No longer consistent!

 in snapshot, yet not in snapshot!e2 e0

A single external node can break the guarantee!

Can we capture a causally consistent snapshot when
a subset of the broader system participates?

20

Beaver:	practical	partial	snapshots

In-group nodes
(Nodes with VIPs of interest)

Out-group nodes
(Nodes without control)

Arbitrary interactions

The same causal consistency abstraction
Even when the target service interact with external,
black box services (arbitrary number, scale, placement,
or semantics) via arbitrary pattern (including multi-hop
propagation of causal dependencies)

Zero impact over existing service traffic
That is, absence of blocking or any form of delaying
operations during distributed coordination

21

How is it even possible without coordinating
machines external to those of interest?

Build a dam like a Beaver!

22

In-group

Backend 0

Backend 1

Out-group
Frontend

Idea	1:	Gateway	(GW)	indirection

Beaver’s gateway (GW) indirection:
Gateway

1. Initiate GW to enter snapshot out-of-band
e0

e2

e1

2. Mark inbound packets correspondinglyConsistent!

Before: inconsistent cut at (after)

With GW: consistent cut at (before)

e2

e2

23

Formalizing	idea	1:	Monolithic	Gateway	Marking

Formal proof in paper

Holds even if treating the out-group
nodes as black boxes

Sufficient to only observe the
inbound messages

24

Key	ideas	in	Beaver

Idea 1: Indirection through Monolithic Gateway Marking (MGM)

Challenge 2 How to handle asynchronous GWs?

How to ensure consistency without coordinating external machines?

Challenge 1 How to instantiate GW?

How to enforce MGM practically in today’s network?

25

Challenge	1:	instantiating	GWs

Rerouting all inbound traffic through the GW is costly

Cloud data centers already place layer-4 load balancers (SLBs)

Data center fabric

VIP 1 VIP 2

Inter-VIP

Internet

SLB VIP2SLB VIP1
Repurpose SLBs for in-situ marking

26

Key	ideas	in	Beaver

Idea 1: Indirection through Monolithic Gateway Marking (MGM)

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

Idea 2: Reuse existing SLBs with unique locations

How to ensure consistency without coordinating external machines?

Challenge 1 How to instantiate GW?

How to enforce MGM practically in today’s network?

27

In-group

Backend 0

Backend 1

Out-group
Frontend

Implications	of	multiple	SLBs

GW 0

GW 1
GW 1 hasn’t initiated the new
snapshot mode to mark it,
triggering the violation

e2

Inconsistent!

 in snapshot, yet that leads to it is not, inconsistent!e2 e0

e0

e1

28

Consistency violation

C
on

si
st

en
cy

Cost

Blocking
Correct but costly

Non-blocking

How about blocking messages to ‘atomically’ trigger all SLBs?

Handling	multiple	GWs:	design	space

? Can we get both consistency
and zero cost?

Optimistic Gateway Marking (OGM)
Intuition & formalism

Mechanism

29

In-group

Backend 0

Backend 1

Out-group
Frontend

GW 0

GW 1

Reflection: Beyond worst cases, when and how often does the violation occur?

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

Time gap between
SLB initiation points

Challenge	2:	handling	multiple	SLBs

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external
causal chain)

→ → →

30

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

e′ 2

Challenge	2:	handling	multiple	SLBs
Reflection: beyond worst cases, how often does the violation occur?

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external
causal chain)

→ → →

e′ 0

e′ 1

Time gap between
SLB initiation points

Theorem: if < , the partial snapshot is consistent!

Formal proof in paper

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

31

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

e′ 2

Challenge	2:	handling	multiple	SLBs
Reflection: beyond worst cases, how often does the violation occur?

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external
causal chain)

→ → →

e′ 0

e′ 1

Time gap between
SLB initiation points

Theorem: if < , the partial snapshot is consistent!

Formal proof in paper

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

Observation: condition holds in most cases anyway!
 can approximate zero
• SLBs share the same region
• Proper placement of controller

 is relatively high
• trips through the fabric
• Higher when the out-group is in

another DC or Internet

≥ 3

Optimistic Gateway
Marking (OGM)

Optimistic execution in common cases

Verification/rejection of
snapshots under worst cases

32

How	does	Beaver	detect	a	snapshot	violation?

Theorem: if < , the partial snapshot is consistent

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

1. Determine the lower bound of statically

2. Measure a safe upper bound for online using a single clock

False positives is fine as one can always retry!

33

Key	ideas	in	Beaver

Idea 1: Indirection through Monolithic Gateway Marking (MGM)

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?
Idea 3: Optimistic Gateway Marking (OGM)
• Optimistic execution in common cases
• Verification/rejection of snapshot under worst cases

How to ensure consistency without coordinating external machines?

Idea 2: Reuse existing SLBs with unique locations
Challenge 1 How to instantiate GW?

How to enforce MGM practically in today’s network?

34

Key	ideas	in	Beaver
How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

Idea 2: Exploit the unique location of existing SLBs

Idea 3: Optimistic Gateway Marking (OGM)
• Optimistic execution in common cases
• Verification/rejection of snapshot under worst cases

More details about Beaver’s protocol…
• Synchronization-free snapshot verification
• Supporting parallel snapshots
• Handling failures
• Handling packet loss, delay, and reordering
• …

35

Implementation	and	evaluation
SLB-associated workflow

• Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch S4048-ON

• Core SLB functions in DPDK: ~1860 LoC
• Backend server functions in XDP and tc: ~1040 LoC

Topology
• Support typical communication patterns
• Possible out-group locations: within the same DC, DC at a

different region, or on the Internet
• Scale up to 16 SLB servers and 1024 backend applications

Beaver protocol integration
• Minimal logic: (1) 68 LoC for SLB DPDK data path logic (2) 102

LoC for eBPF at in-group VMs

Layer-3 switches
Internet

SLBs Controller Backend servers
(w/ in-group VIP)

Client

Data center A

1

Backend servers

Data center B

2

3

36

Details	in	the	paper…

Beaver supports fast snapshot rates

Beaver incurs zero impact

Region B (out-group)
Post-upload

Post-storage

Notifier

Region A (in-group)
Notifier

Post-storage
Case 1

Replication

Case 2

Pseudo-dependency

Storage A

Storage B

<latexit sha1_base64="ZHlhKowLL3qGcSH28nDbj++WOjE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ie0Q8lkMm1okhmSjFCGfoUbF4q49XPc+Tem01lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbud+94kqzWL5YKYJ9QUeSRYxgo2VHgfcRkM89IbVmlt3c6BV4hWkBgVaw+rXIIxJKqg0hGOt+56bGD/DyjDC6awySDVNMJngEe1bKrGg2s/yhWfozCohimJlnzQoV39PZFhoPRWBTQpsxnrZm4v/ef3URNd+xmSSGirJ4qMo5cjEaH49CpmixPCpJZgoZndFZIwVJsZ2VLEleMsnr5LORd27rDfuG7XmTVFHGU7gFM7Bgytowh20oA0EBDzDK7w5ynlx3p2PRbTkFDPH8AfO5w9pvZAq</latexit>

�1

<latexit sha1_base64="jPK9ZxvhCyGEEsDEshQf5ISOajU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUUl0W3bisYB/SDiWTybShSWZIMkIZ+hVuXCji1s9x59+YtrPQ1gOBwznnkntPkHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2BNOZO0bZjhtJcoikXAaTeY3M797hNVmsXywUwT6gs8kixiBBsrPQ64jYZ4WBuWK27VXQCtEy8nFcjRGpa/BmFMUkGlIRxr3ffcxPgZVoYRTmelQappgskEj2jfUokF1X62WHiGLqwSoihW9kmDFurviQwLracisEmBzVivenPxP6+fmujaz5hMUkMlWX4UpRyZGM2vRyFTlBg+tQQTxeyuiIyxwsTYjkq2BG/15HXSqVW9RrV+X680b/I6inAG53AJHlxBE+6gBW0gIOAZXuHNUc6L8+58LKMFJ585hT9wPn8Aa0GQKw==</latexit>

�2

put(k) get(k) deref(k) deref(k)

In-group

Beaver
partial

snapshot

Inconsistent
traditional
snapshot

Lambda
life time

InvokeBrowser
client

GPU
backend

GPU
backend In-group

Use cases: integration testing, service
analytics, deadlock detection, garbage

collection…

Beaver rejects snapshots infrequently

37

Example:	garbage	collection	for	ephemeral	storage

Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

38

Example:	garbage	collection	for	ephemeral	storage

put(k)

+1

Invoke

get(k)

+1

deref(k)

-1

deref(k)

Lambda life time

-1
Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

39

Example:	garbage	collection	for	ephemeral	storage

put(k)

+1

Invoke

get(k)

+1

deref(k)

-1

deref(k)

Lambda life time

-1
Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

Strawman
Reference count = 0, unsafe recycle
decision of !k

Reference count = 1, safe decision
recognizing open reference to k

40

Beaver:	summary

The first partial snapshot protocol that extends classic distributed
snapshots in practical cloud settings

Guarantees causal consistency while incurring minimal changes and
overheads

Key idea: Exploit data center characteristics (e.g., unique topologies)

41

Case	studies

Distributed snapshots

Beaver (OSDI 2024)
Practical Partial Snapshots for Distributed Cloud Services

Synchronous coordination

Cuttlefish (WIP)
Cuttlefish: A Fair, Predictable Execution Environment for Cloud-hosted
Financial Exchange

Failure detection

OrbWeaver (NSDI 2022)
Using IDLE Cycles in Programmable Networks for Opportunistic Coordination

Cuttlefish:	A	Fair,	Predictable	Execution	
Environment	for	Cloud-hosted	Financial	Exchange

42

Liangcheng (LC) Yu, Pradesh Goyal, Ilias Marinos, and Vincent Liu

MPMPMP GW

GW

CES

MP: market participant
GW: gateway
CES: central exchange server

MPMPMP

Fairness,	in	on-premise	infrastructure

Equal-length
cables

L1 fan-out
switches

43

Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

Co-location in the same physical facility

Rising	interest	in	cloud-hosted	exchange	services

44

System scalability and resource elasticity
Cost reduction and ease of management
Rise of remote work
…

Fairness,	in	the	cloud

CES

MP

MP

MPMP

MPMP

45

Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

Unfairness!

RB

RB

MP: market participant
RB: release buffer
CES: central exchange server

Variant latencies
Different paths, congestion…

RB

RB

Fairness,	in	CloudEx	[HotOS	’21]

CES

MP

MP

MPMP

MPMP

46

Idea: clock synchronization + message inhibition

Perfect clock synchronization is hard

Latencies are unpredictable and unbounded

Infeasible to determine the threshold!

MP: market participant
RB: release buffer
CES: central exchange server

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

47

Let’s	reflect	on	underlying	model	today…
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous
delivery is impossible!

Δti

Δtj

Computation can be non-
deterministic at

(thermal condition, resource
utilization…)

O(μs)

t

t

t

D(j, x)

D(i, x)

For the same data:
D(i, x) ≠ D(j, x)δ

For the same code:
Δti ≠ Δtjδ

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

48

CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous
delivery is impossible!

Δti

Δtj

Computation can be non-
deterministic at

(thermal condition, resource
utilization…)

O(μs)

t

t

t

D(j, x)

D(i, x) For the same data:
D(i, x) ≠ D(j, x)

δ

For the same code:
Δti ≠ Δtj

δ

Let’s	reflect	on	underlying	model	today…

Communication and
computation synchrony are

challenging in real-time

Symptoms: trading arms race to
gain advantage and increasing

market consolidation
δ

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

49

Synchrony	is	challenging,	in	real	time
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous
delivery is impossible!

Δti

Δtj
For the same code:
Δti ≠ Δtj

D(j, x)

D(i, x) For the same data:
D(i, x) ≠ D(j, x)

Computation can be non-
deterministic at

(thermal condition, resource
utilization…)

O(μs)

t

t

t

Can we guarantee fairness via achieving communication
and computation synchrony?

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay

Determinism w.r.t. underlying communication & computation
Generality to trading patterns
Democratized competition for special hardware

Cuttlefish: A Predictable Execution Environment

50

Cuttlefish	outline

Conceptual foundation

User abstraction

Demo of the real system

Implementation and benchmarks

This lecture

Virtual time
CES

MPi

MPj

G(x)

vt

vt

t

Virtual time
CES

MPi

MPj

t

vt

vt

51

G(x)

Δvti

Δvtj
For the same code:
Δvti = Δvtj

Freezing and advancing
for communication synchrony

vt

Quantizing per ‘actual
amount of work’ for

computation synchrony

vt

Impossible?	Imagine	in	virtual	time	domain	…
Virtual time unit some equal amount of work≡

D(j, x)

D(i, x) For the same data:
D(i, x) = D(j, x) = vtdelivery

vtdeliveryvtdelivery

Virtual time
CES

MPi

MPj

G(x)
t

vt

vt

Virtual time

52

Synchrony	is	achievable,	in	virtual	time	domain
CES

MPi

MPj

G(x)

Δvti

Δvtj
For the same code:
Δvti = Δvtj

D(j, x)

D(i, x) For the same data:
D(i, x) = D(j, x)

vt

vt

t

Communication
synchrony via freezing

and advancing vt

Computation synchrony by
quantizing based on pre-

defined compute cycles
vt

How	to	implement	a	real	system?
Instantiate as virtual cycles of a platform-agnostic IR/VMvt

Account and control the advancement of virtual cycles

Worker pool

Controller Controller Controller

OB & CES

(,vcx) (,vci)

Auditing log

External msg

GW

Fairtopia platform

Programming
interface

1

Runtime
execution

3

Virtual cycle
tracking

2

User	programming	abstraction

53

#include <fairtopia_user.h>

int mu_handler(subscribed_context_t* data) {
 if ((*data) > 100) {
 // Sell
 trade_t trade = 1;
 submit_trade(&trade);
 } else if ((*data) < 10) {
 // Buy
 trade_t trade = 2;
 submit_trade(&trade);
 }
 map_update(0, &trade);
 return 0;
}

White-list set of
extensible service APIs

Just-in-time trade
submission

Narrow KV store API (e.g., lookup,
update) for stateful invocationsTrading decision(s)

Input market data, external
message…

Online trading algorithm
algm* = argmaxalgmprofit(algm)

54

The	interface	is	expressive	enough
Fibonacci, Bubble Sort…
SMA Mean Reversion
EMA Mean Reversion
Relative Strength Index
Moving Average Crossover Strategy
Bollinger Bands Strategy

Moving Average Convergence Divergence
Multiple Moving Average Crossover Strategy
Parabolic SAR
On Balance Volume (OBV) + EMA
Stochastic Oscillator
Basic Market Making
…

GPT-4

Running out-of-the-box

55

Implementation

Program life time Virtual cycle tracking instrumentation

Runtime execution engine Virtual cycle assignment

56

Implementation

Program life time Virtual cycle tracking instrumentation

Runtime execution engine Virtual cycle assignment

Abstraction: Fair, predictable execution environment
Cloud network communication
Compute hardware
Trading patterns
…

Guaranteed fairness
w.r.t. heterogeneity in:

57

Case	studies

Distributed snapshots

Beaver (OSDI 2024)
Practical Partial Snapshots for Distributed Cloud Services

Synchronous coordination

Cuttlefish (WIP)
Cuttlefish: A Fair, Predictable Execution Environment for Cloud-hosted
Financial Exchange

Failure detection

OrbWeaver (NSDI 2022)
Using IDLE Cycles in Programmable Networks for Opportunistic Coordination

58

OrbWeaver:	
Using	IDLE	Cycles	in	Programmable	Networks	for	
Opportunistic	Coordination

Liangcheng (LC) Yu, John Sonchack, and Vincent Liu

Common approach:
Periodic, high priority heartbeats

Traditional uni-directional heartbeats

Node A Node B

‘I am alive’

‘I am alive’

‘I am alive’
Suspect?

59

Example:	failure	detection

Fundamentally indistinguishable:
message drop or actual failure?

Empirically, use conservative detection thresholds

To cost extra bandwidth for efficacy, or not?

60

When	introducing	a	distributed	coordination	function…

Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

61

clock-sync rate clock precision↔Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

To cost extra bandwidth for efficacy, or not?

When	introducing	a	distributed	coordination	function…

62

clock-sync rate clock precision
keep alive message frequency detection speed

probe data/rate measurement accuracy
INT postcard volume post-mortem analysis

↔
↔

↔
↔

Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

To cost extra bandwidth for efficacy, or not?

When	introducing	a	distributed	coordination	function…

63

clock-sync rate clock precision
keep alive message frequency detection speed

probe data/rate measurement accuracy
INT postcard volume post-mortem analysis

↔
↔

↔
↔

Is this trade-off between overhead and fidelity necessary?

Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

To cost extra bandwidth for efficacy, or not?

When	introducing	a	distributed	coordination	function…

To consume extra bandwidth for efficacy, or not to?

64

When	introducing	an	in-band	control	function…

clock-sync rate clock precision
keep alive message frequency detection speed
probe data/rate measurement accuracy
INT postcard volume post-mortem analysis

↔
↔

↔
↔

Time synchronization
Failure detector

Congestion notification
In-band telemetry

Is this trade-off between fidelity and overhead necessary?

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

• Exploit every gap () between user packets opportunistically
• Inject customizable IDLE packets carrying information across devices

O(100ns)

65

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

Idea: Weaved Stream

Opportunity: 	gaps	are	prevalent< μs

66

Inter-packet gaps

Root causes?
• Uncertainties in application load patterns (e.g., burstiness)
• Conservative resource provisioning for peak usages
• Bottlenecks at CPU processing vs network BW
• TCP effects
• Structural asymmetry
• …

67

Abstraction:	weaved	stream
Union of user AND IDLE (injected) packets

τ = B100Gbps /MTU1500B = 120ns

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

68

Abstraction:	weaved	stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Implement many in-network applications
(failure detection, clock sync, congestion notification…)

for free!

69

Crazy	idea?

Programmable in-network devices (switches, NICs)

Hardware prototype on a pair of Wedge100BF-32X Tofino switches

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

PD
F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000

O
bs

er
ve

d
in

te
rv

al
 [n

s]

Packet

Target rate
Maximum

70

Implementation	and	evaluationTakeaway: Little-to-no impact of power draw, latency, or throughput
while guaranteeing predictability of the weaved stream!

Power draw

Latency Scalability

Predictability

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Self-healing failure detection

Packet forensics

Network queries

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

71

OrbWeaver	use	cases

Push the detection speed to its limits toward
instantaneous, self-healing failure mitigation

Before: Weak guarantee of the messaging channel
After: OrbWeaver’s weaved stream abstraction guarantees maximum
inter-packet gap (120ns for 100 GbE)

72

Failure	detection	with	OrbWeaver

 0

 0.5

 1

 1.5

10G 25G 100G

D
et

ec
tio

n
tim

e
[µ

s] BFD 105 µs

Emulated failures with optical attenuators tested
under varying link speeds

0.0

0.2

0.4

0.6

0.8

100MB 1GB

C
om

p.
 T

im
e

[s
ec

] Original
OrbWeaver

BFD

1

3

5

 0 1 2 3 4

< 1µs

Pa

ck
et

 /
µ

s

Time [µs]

Original Dropped Reroute

Combining it with data-plane reroute

Near-zero
impact!

73

Summary
Designing efficient distributed systems primitives by exploiting the
characteristics of modern data centers:

Beaver (OSDI 2024)

Cuttlefish (WIP)

More opportunities for innovations with emerging data center applications (e.g.,
LLM agents) and hardware (e.g., time appliance, programmable accelerators)!

OrbWeaver (NSDI 2022)

Distributed snapshots

Synchronous coordination

Failure detection

