Designing Efficient Distributed Systems Primitives by
Exploiting Data Center Network Characteristics

Liangcheng (LC) Yu
Researcher@Microsoft Research

Guest lecture, CS 134: Distributed Systems
May 22, 2025

|
]

Microsoft Research

About me

| am a researcher at Microsoft Research Redmond
| work on computer systems and networking
...with a focus on improving the efficiency of modern cloud networks

This course is about distributed systems...

Image source: https://haydenjames.io/the-two-generals-problem/

Classic distributed systems Cloud dat centers

What concepts come to mind when you think
about distributed systems?

A conceptual model of distributed systems

Message Network
7 sonc —h
m —> Message(- 1)
receive
Computation@; > = ggg
step
Process

A distributed system is a collection of autonomous computing
elements that appears to its users as a single coherent system.
—Maarten van Steen and Andrew S. Tanenbaum

What if we map this model

to cloud data centers?

What about cloud data centers?

Microsoft Datacenters

200+ data centers across 65+ regions

What about cloud data centers?

Multi-tier Model

Internet

Internet

Core layer

Aggregation layer

Access layer

Servers

amazon
V
== Microsoft

Google

What about cloud data centers?

Emerging application requirements

- o * &(& How to design distributed systems primitives,
° - 5:322 oe . o efficiently?

___________________________ _\ '_ Data centers are not arbitrary systems!
- Regularities in network topology

BE Microsoft - Emerging hardware capabilities

Gorgle amazon - Specific application requirements
—
X j : " =
ﬁ ..U ﬁ ...exploit data center characteristics and

rethink the classic design principles!
Massive-scale data centers

Case studies

~
Beaver (OSDI 2024)

Practical Partial Snapshots for Distributed Cloud Services

Distributed snapshots)

-
_
Cuttlefish (WIP)

ﬁ Cuttlefish: A Fair, Predictable Execution Environment for Cloud-hosted

Financial Exchange
Synchronous coordination

OrbWeaver (NSD/ 2022)
Using IDLE Cycles in Programmable Networks for Opportunistic Coordination

Failure detection

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

usenix yusenix usenix
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AVAILABLE REPRODUCED

Beaver:
Practical Partial Snapshots for Distributed Cloud Services

Liangcheng (LC) Yu, Xiao Zhang, Haoran Zhang, John Sonchack, Dan R. K. Ports, and Vincent Liu

% PRINCETON —
UNIVERSITY

Microsoft Research

10

Let’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
aan send ° aon
& D —>
—> Message(-___ 00}
States receive States
Computation <« _,
step Nl ’
States States

S

11

Let’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message

send - m

o Im —2 i

m —> Message(-___ il

States receive States

Computation <+— _,
G o Iy

step W

States States

3

Snapshots are useful!

TS

Network telemetry Distributed software Deadlock detection Checkpointing and
debugging failure recovery

12

Classic distributed snapshots

e.q., Chandy-Lamport (TOCS 1985)

13

Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)

Initiation
€

- @
m Taaqin
Node O ! \gg g

‘ Snapshot

Node 1 Consistent cut triggering

Guarantee of causal consistency &)

For any event e in the cut, ife’ — e (Lamport’s ‘happened before’), e’ is in the cut.

14

Classic snapshots operate in an isolated universe

T

Node 1

Consistent cuz‘

Utopian: isolated ‘universe’ of nodes

Fundamental assumption:
The set of participants are eclosed under causal propagation.

@ Unfortunately, the assumption
mismatches the real-world scenarios!

The assumption rarely matches reality!

&
Instrumentation

: Modular services :
constraints
% My service
Utopian: isolated ‘universe’ of nodes % WWW..

@/ﬁ :)

Costs and Hidden causality
overheads due to human

The assumption mismatches the reality!

@ Unrealistic to assume zero external interaction
Impractical to instrument all processes

Consequences?

Frontend
\ An external node

Hidden causal relationship: ey < e,
e, In snapshot, yet ey not in snapshot!

ezi‘a /

Backend 1 No longer consistent!

wIII

===

===

===
[

ackend O

Q)

s

(-] (-] (]
[—]1l=]||=]
[—=l|= =
—=lli=l=

Nodes of interest

@ A single external node can break the guarantee!

18

Can we capture a causally consistent snapshot when
a subset of the broader system participates?

Beaver: practical partial snapshots

Out-group nodes
(Nodes without control)

@ The same causal consistency abstraction

'i@\ Even when the target service interact with external,
- black box services (arbitrary number, scale, placement,

or semantics) via arbitrary pattern (including multi-hop

Arbitrary interactions propagation of causal dependencies)

o ﬁ. " @Zero impact over existing service traffic

That is, absence of blocking or any form of delaying
operations during distributed coordination
In-group nodes
(Nodes with VIPs of interest)

20

How is it even possible without coordinating
machines external to those of interest?

L3

ldea 1:

Frontend

Backend 0
m

Baokend 1

Gateway (GW) indirection

e Out-group

‘ Beaver’s gateway (GW) indirection:
1. Initiate GW to enter snapshot out-of-band
Consistent!® "N 2. Mark inbound packets correspondingly

In-group

Before: inconsistent cut at O (after e,)

With GW: consistent cut at O (before e,)

22

Theorem 1. With MGM, a partial snapshot Cpan for PnCP
is causally consistent, that is, Ve € Cpar, if € .p € P" Ne' — e,
then €' € Cpan.

Proof. Lete.p=p{" and ¢ .p = p'. There are 3 cases:
1. Both events occur in the same process, i.e., i = j.
2. i # j and the causality relationship ¢/ — e is imposed
purely by in-group messages.
3. Otherwise, the causality relationship ¢/ — e involves at
least one p € P,

In cases (1) and (2), the theorem is trivially true using
identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e € Cparr) A (e’ —) but (¢ ¢ Cparr). With (3),
e’ — e means that there must exist some ¢°* (at an out-group
process) satisfying e/ — ¢ — e. Now, because €' ¢ Cparr,
we know e;jn — e or e;{,, = ¢/, that is, pg-"’s local snapshot
happened be/fore or during]; ¢'. Combined with the fact that the
gateway is the original initiator of the snapshot protocol, we
know that e’ — ¢’ — ™ —e.

We can focus on a subset of the above causality chain:
e%* — e. From the properties of the in-group snapshot proto-
col, ey’ — e implies that e ¢ Cpay:.

This contradicts our original assumption that e € Cpepr! O

Formal proof in paper

Formalizing idea 1: Monolithic Gateway Marking

Holds even if treating the out-group
nodes as black boxes

Sufficient to only observe the
inbound messages

23

Key ideas in Beaver ‘

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?

Challenge 2 How to handle asynchronous GWs?

24

Challenge 1: instantiating GWs

@ Rerouting all inbound traffic through the GW is costly
Q Cloud data centers already place layer-4 load balancers (SLBs)

Inter-VIP

SLB VIP1 - @ Repurpose SLBs for in-situ marking

25

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

26

Implications of multiple SLBs

Out-grou
Frontend I arodp

GW 1 hasn't initiated the new
snapshot mode to mark i,

:) triggering the violation

o0 /

Backend 1 ‘%o

e, in snapshot, yet ¢, that leads to it is not, inconsistent!

In-group

27

Handling multiple GWs: design space

How about blocking messages to ‘atomically’ trigger all SLBs?

& P .
) ‘ Can we get both consistency

~" Blocking and zero cost?
Correct but costly

Consistency

~ Non-blocking Q Optimistic Gateway Marking (OGM)
Consistency violation { Intuition & formalism

B
Cost ,
Mechanism

28

Challenge 2: handling multiple SLBs

Reflection: Beyond worst cases, when and how often does the violation occur?

Out-group

Frontend

Observation:

Causally relevant messages are rare!
GW—=in-group—out-group—>GW (external
causal chain)

: s
BN Intuition: the resulting snapshot is consistent

Backend 1 | H——p 1. if » is large enough
- - 2. or if v is ‘close’ enough

i" ’" In-group

Time gap between
SLB initiation points

29

Theorem: if «» < «», the partial snapshot is consistent!

4>
4+

Time gap between initiator-to-SLB one-way delays
Time to form an external causal chain (GW— in-group— out-group— GW)

Theorem 2. In a system with multiple asynchronous gateways,
let the wall-clock time of the first and last gateway snapshots
be ey, = mings(eg’.t) and ey, = maxey(ey'.t), respec-
tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
8.8 €G, p€ P" and g € P. If egmar-t = €ppint < Tmins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (e € Cparr) A (3¢’ — €) but (¢' & Cpar). As before,
there must be some chain &’ — ¢” — ef — e. Because ¢’ ¢
Cpart, we have e‘;,,, — ¢ or e;’:n =¢, that is, p’;" must have
been triggered diré:ctly or indirjectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as e By the definition of T, we have 8.t — et >
Tmin > €gmax-t — €gmin-t- Thus, at event e, the gateway must
have already initiated the snapshot and will mark e#.m before
forwarding. This results in e ¢ Cpart, contradiction! [m]

Formal proof in paper

Theorem: if «» < «», the partial snapshot is consistent!

.
4% = Time gap between initiator-to-SLB one-way delays Theorem2. Inasysem it muliple asynchonous sateways,
. . . let the wall-clock time of the first and last gatewa shots
4% = Time to form an external causal chain (GW— in-group— out-group— GW) b = i (571) 0 i (1) e
ggyeG pEPg quP: Ifg,,gmgt—pq < Ty
then the partial snapshot is causally consistent.
Proof. We extend the proof of Theorem 1 to a distributed

tt ng. S mllan Theorem 1, there are three cases, with (3)

Observation: condition holds in most cases anyway! == e

eremutb e some cl hame% ~) 8 — e. Bec: ¢
C,.a we have é — p, /, that is, p’ muth

tngg ddu'e tly du'e tly byanl nbound message.

<% can approximate zero < [S relatively high T

mm> s ol —e tTh at event ¢f, the gateway must
hav lady ut/edth pht dwllmark gmbfre

* SLBs share the same region - > 3 trips through the fabric v it o st

Formal proof in paper
* Proper placement of controller * Higher when the out-group is in
another DC or Internet

Optimistic execution in common cases

Optimistic Gateway /
Marking (OGM) \

Verification/rejection of
snapshots under worst cases

How does Beaver detect a snapshot violation?

Theorem: if «» < «», the partial snapshot is consistent

4% = Time gap between initiator-to-SLB one-way delays
4% = [ime to form an external causal chain (GW— in-group— out-group— GW)

‘Q’ 1. Determine the lower bound of <+ statically

2. Measure a safe upper bound for <+ online using a single clock

@ False positives is fine as one can always retry!

32

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today’s network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

Idea 3: Optimistic Gateway Marking (OGM)
« Optimistic execution in common cases
» Verification/rejection of snapshot under worst cases

33

More details about Beaver’s protocol...
« Synchronization-free snapshot verification

« Supporting parallel snapshots

- Handling failures

- Handling packet loss, delay, and reordering

Implementation and evaluation

SLB-associated workflow

« Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch S4048-ON

« Core SLB functions in DPDK: ~1860 LoC , Data center A
. Backend server functions in XDP and tc: ~1040 LoC O |-
="

Layer-3 switches
Client

Beaver protocol integration ’\
Data center B

- Minimal logic: (1) 68 LoC for SLB DPDK data path logic (2) 102 e ﬁ
LoC for eBPF at in-group VMs 0 — B ma
| Backend servers SLBs Controller E’Na/cilr(fn?o 3er\\//e"rjs)
opology —

« Support typical communication patterns

« Possible out-group locations: within the same DC, DC at a
different region, or on the Internet

« Scale up to 16 SLB servers and 1024 backend applications

35

Details in the paper:--

6000 = 300000
L L % —
5 5000 > 250000 1 3 S 1 ! —
e e 5) Tmin y
§ 4000 § 200000 5K g 08
2 3 IR 5 '
8 3000 @ 150000 K H 06
£ £ B
g 2000 5 100000 fEHEES : g o4 inva D0 ——
i 06—
S 1000 S 50000 aik b ' 2 : 02 f oy Thieret
S o » o EARSES k: gl BN & b 0 I L | | ,
128 256 384 512 640 768 896 1024 1282563845126407688961024 w 8192 16384 327 10' 10? 10?10t 10° 10°
of VMs #of VMs Snapshot frequency [Hz] Time window fs]
(a) w/o parallelism (b) w/ parallelism

Beaver supports fast snapshot rates J Beaver rejects snapshots infrequentIyJ

5 12 § 1.2
.g' 1 . © 1 4
g, B E
© 08 1 =) 2 08
£ /% 8. 0.6 BE B 4 & Bro_wser Region B (out-group)
-8 0.6 R :5.:1 3 5 _S 8 T!I]l"‘ough ut w/‘} ge er X client
N B - =3 roughput w/ Beaver &z
% 04 E wx; gg;z:: % 0.4 p99 Iatgnt':)y w/o Beaver £ GPU
E 0.2 K& %J g% E 0.2 backend
2 5 : S 4 GPU EAAT™
2(‘) 46 60 80 z backend In-group D Peststerage e o dependency
Load [%] Workload
(a) Stressed workloads (b) YCSB benchmarks

Use cases: integration testing, service
Beaver incurs zero impact J analytics, deadlock detection, garbage
collection...

36

Example: garbage collection for ephemeral storage

put/get/deref

> eg D

Backend

S

Backend In-group

Example: garbage collection for ephemeral storage

put/get/deref . |
emera
> @ @ St%rage

Lambda life time

lllllllllllllllllllllllllll

A
SRR B A

2

+1 -1
Backend In-group

38

Example: garbage collection for ephemeral storage

put/get/deref @
Eph |
@ > @% St%rsg]eera

Lambda life time

/11 -’¢------------------------.:- Strawman
YR bl 'p-"-%%"\ """ 'f \ Reference count = 0, unsafe recycle
2 v .
.\ \ \‘ \ decision of k!
put(k) get(k) deref(k) deref(k)
VARV AR |
@ +1 'Jf” L
Backend R4 Reference count = 1, safe decision
S A [recognizing open reference to k

e’ H1e -1
Backend ’ \%o In-group

39

Beaver: summary

The first partial snapshot protocol that extends classic distributed
snapshots in practical cloud settings

Guarantees causal consistency while incurring minimal changes and
overheads

Key idea: Exploit data center characteristics (e.g., unique topologies)

Case studies

Beaver (OSDI 2024)
Practical Partial Snapshots for Distributed Cloud Services

Distributed snapshots

Cuttlefish (WV/P) R
Cuttlefish: A Fair, Predictable Execution Environment for Cloud-hosted
Financial Exchange

Synchronous coordination)

=
&
i

OrbWeaver (NSD/ 2022)
Using IDLE Cycles in Programmable Networks for Opportunistic Coordination

Failure detection

41

Cuttlefish: A Fair, Predictable Execution
Environment for Cloud-hosted Financial Exchange

Liangcheng (LC) Yu, Pradesh Goyal, llias Marinos, and Vincent Liu

= €2 FPenn

MicrOSOft ResearCh nVI DIA@ UNIVERSITY 0f PENNSYLVANIA

42

Fairness, in on-premise infrastructure

MP: market participant
GW: gateway
CES: central exchange server

"é’lﬁﬁ‘

- \ —

Equal-length L1 fan-out
cables switches

» Outbound: simultaneous release of market data stream
» Inbound: trade processing in the order of its arrival

Rising interest in cloud-hosted exchange services

CIO JOURNAL
b
A fully cloud-hosted exchange is coming Nasdaq to Move Markets to Amazon’s
but for now, one piece at a time ClOlld
Execs from Google, LSEG and NYSE discuss how exchanges are beginning
leverage the true potential of the cloud. The exchange says a phased migration to Amazon Web Services will
market
LSEG and Microsoft launch 10-year strategic partnership for next- —
generation data and analytics and cloud infrastructure solutions;
Microsoft to make equity investment in LSEG through acquisition of
shares
===== har 113023 Mionarte N Cartar Microsoft signs $28B cloud deal with .ondon
q e Stock Exchange Group
Google Invests $1 Billion in Exchange ..
Giant CME, Strikes Cloud Deal
Tie-up gives Google’s cloud arm a prize client in financial services
By Alexander Osipovich The 10-year partnership calls for the L(:Jndon Stock Exchange Group to mc?ve all its systems to Microsoft
P — Azure Cloud and work with the tech giant to develop new data and analytics products.
e — — —

w

System scalability and resource elasticity
Cost reduction and ease of management
Rise of remote work

w

w

Fairness, in the cloud

MP: market participant
RB: release buffer
CES: central exchange server

Unfairness!

45

Fairness, in CloudEx (HotOS 21)

Q Idea: clock synchronization + message inhibition

MP: market participant
. RB: release buffer
l CES: central exchange server

‘ Infeasible to determine the threshold! Q

@ Perfect clock synchronization is hard

(®) Latencies are unpredictable and unbounded

46

Let’s reflect on underlying model today--:

Wall clock time

G(x) |
CES oy $ 1
i 5 1 For the same data:
LSV DG, x) # D(j,x) |
MP, [I ‘&t
kD(Z, -x) Image source: https://haydenjames.io/the-two-generals-problem/
|
MP, : P ¢ Truly simultaneous
DG, 0) delivery is impossible!
G(x) Wall clock time
CES " A
I A i 5 g For the same code:
i ;o HE R g Computation can be non-
" o deterministic at O(us)
: At, : i (thermal condition, resource
MP, B .l . utilization...)

47

Let’s reflect on underlying model today--:

ces GX Wall cloc ktimg)
o} e
! D(X) —

M D(i.x) ‘ —Pt ‘C_/‘; y

s G Wl clock time ‘J\“]\ , ®

up 1Ay 5 FAtt;Atm code . \J '

MPj Atli g t

Communication and Symptoms: trading arms race to
computation synchrony are gain 6 advantage and increasing

challenging in real-time market consolidation

Can we guarantee fairness via achieving communication
and computation synchrony?

Q Cuttlefish: A Predictable Execution Environment

© [b (A

Cuttlefish Virtual Time Overlay

(o s o ———
%@@3@;

» Determinism w.r.t. underlying communication & computation

A I A » Generality to trading patterns

» Democratized competition for special hardware

Cuttlefish outline

» Conceptual foundation

This lecture
» User abstraction

50

Q" Impossible? Imagine in virtual time domain -+

Virtual time unit = some equal amount of work

CES

MP;

MP;

CES

MP;

MP;

G(x) Virtual time
$!
i i
\| Avti |
: - $ vt
. » For the same code:
I Avy; : Avt; = Avt,
P vt
Virtual time

G(x)

:
thelivery
thelivery *
o vt

\i)(i, X) For the same data:

. BV

D(l’ X) - D(]’ X) = thelivery
D(j, x)

Quantizing vt per ‘actual
amount of work’ for
computation synchrony

Freezing and advancing vt
for communication synchrony

51

How to implement a real system??

\ Instantiate v as virtual cycles of a platform-agnostic IR/VM

Q Account and control the advancement of virtual cycles

b= fr%f) : .
== : Programming

External msg 4 | Y aeBPFE interface

-}
V!' Worker pool \

@@@4 GO0 60O | execution

Controller| Controller | ‘«'
1

Py

il il il : Virtual cycle
| @ || @ | tracking
i
B oBacEs &
. Auditing log

Fairtopia platform

User programming abstraction

White-list set of
extensible service APIs
int mu_handler(subscribed context t* data) ({

if ((*data) > 100) {
// Sell
trade_t trade = 1;
submit_trade(&trade);
} else if ((*data) < 10) {
// Buy
trade t trade = 2;

Input market data, external #include <fairtopia_user.h>

message. ..

!

Online trading algorithm

algm* = argmax,,,, profitalgm) Just-in-time trade

submit trade(&trade); submission
}
‘L map_update(0, &trade);
return 0; Narrow KV store API (e.g., lookup,

Trading decision(s) } update) for stateful invocations

53

The interface is expressive enough

Fibonacci, Bubble Sort...

SMA Mean Reversion

EMA Mean Reversion

Relative Strength Index

Moving Average Crossover Strategy
Bollinger Bands Strategy

Moving Average Convergence Divergence
Multiple Moving Average Crossover Strategy
Parabolic SAR

On Balance Volume (OBV) + EMA
Stochastic Oscillator

Basic Market Making GPT-4

@ Running out-of-the-box

54

Implementation

, User-space
' controller

F\% eBPF frontend
+ p handler helper

: Instrumentation
| 1 Memo! r0—rax
mu.c ry rax
v HeBPF . relocation rl-rdi
A . mu.o
Native compiler : Verifier —¥% . —4 JIT translator
1
. Inline helper
clang -target bpf ' %64 | binar
' Virtual cycle v

@ tracking @

Program life time

eBPF asm

0000000000000000 <u_handler>:

Sall it
*(u64 *)(rl0 - 8) = r0
r2 = rl10 Native HW asm
r2 += -8

00 00 00 00 00 00 00 00 _rl = 0 11

5000 00 Call 10 -

b 01 00 00 00 00 00 00 rl = r0

"™~ 49 BB FO DE BC 9A 78 56 34 12

67 01 00 00 20 00 00 00 rl <<= 32 ~ ; add gword ptr [rll], 2
77 01 00 00 20 00 00 0O rl >>= 32
b7 00 00 00 01 00 00 00 z0 = 1 (O G 02 02 00 O o x64
B 55 01 01 00 00 00 00 00 if rl != 0 goto +1 <LBBO 2>
(12: b7 00 00 00 00 00 00 00 r0 = 0 VCi+ = AVC

0000000000000068 <LBBO 2>:

{vc;} maintained by m
L))]
execution runtime

13: 95 00 00 00 00 00 00 00 exit

Command buffer

1
©:] v, = max(ve;, vex
Subscribed = Command . Ve (e, vey) KV stoge VC counter
data (x, ve: S dispatcher § —- >@ . . R/W
% CES YA e thread] ~ i i
ol 9] .
e O o] e % ' , @ mu_mpl.o
Matching 7" ¢ 1 , = 1
i o]
Engine XK 2 !
Y 8 f Lock-free 2
c . SPSC rings mu_mp2.o
Spere 000 £ -
Buffer - = f p
o]
Aggregator mu_mp3.0
{(trade,vc,-)},\;\ ' b B @
heartbeat=min{vc;} 5 hrsad ' ~ P

(polling, §4—y—
Affined worker threads

~submit trade

& &]
batching) 1 @)
1 X (trade, vc;)
&
™ & Trade buffer
NS

Runtime execution engine

sorting, 1

Netwo

Controller runtime

Virtual cycle tracking instrumentation

2
vc

t

4

Virtual cycle assignment

55

eBPF frontend
+ p handler helper

mu.c a@BPF

q , mu.o
Native compiler

clang -target bpf

Implementation

User-space eBPF asm
controller
Instrumentation
Native HW asm
Memory rg%rgg
relocation s
Verifier . JIT translator
Inline helper
. x64 binar
Virtual cycle v

{vc;} maintained by [@
execution runtime

tracking : : :

Abstraction: Fair, predictable execution environment

CES

Matching

e Cloud network communication

Guaranteed fairness | ® Compute hardware

w.rt. heterogeneity in:) e Trading patterns

Engine

Ordering <)

Bufrer. <030
{(trade, vcy)},

heartbeat=min{vc;}

,‘ Network communice

@ ...
LOCK-Tree
SPSC rings 1DE ImuSMp2L O\i
x+2
Aggregator g @ mu_mp3.o0 x+ 1
thread =
(polling £ X
sorting - Affined worker threads
batching) Submit trade
F (trade, vc;) t

Trade buffer
Controller runtime

56

Case studies

Beaver (OSDI 2024)
Practical Partial Snapshots for Distributed Cloud Services

Distributed snapshots

Cuttlefish (WIP)
Cuttlefish: A Fair, Predictable Execution Environment for Cloud-hosted
Financial Exchange

Synchronous coordination

&
s

~
OrbWeaver (NSD/ 2022)

Using IDLE Cycles in Programmable Networks for Opportunistic Coordination

Failure detection)

57

OrbWeaver:

Using IDLE Cycles in Programmable Networks for
Opportunistic Coordination

Liangcheng (LC) Yu, John Sonchack, and Vincent Liu

8 PRINCETON
UNIVERSITY

58

Example: failure detection

Node A

‘I am alive’ @ _

‘I am alive’ @ _

A {

‘I am alive’ @

e
e
-

Node B

? Suspect

Common approach:

Periodic, high priority heartbeats

Fundamentally indistinguishable:
message drop or actual failure?

Empirically, use conservative detection thresholds

59

When introducing a distributed coordination function---

&0
@* To cost extra bandwidth for efficacy, or not?

Time synchronization
Failure detector
Congestion notification

In-band telemetry

60

When introducing a distributed coordination function---

578
@ To cost extra bandwidth tor efficacy, or not?
Time synchronization clock-sync rate <> clock precision

Failure detector
Congestion notification

In-band telemetry

61

When introducing a distributed coordination function---

578
@ To cost extra bandwidth tor efficacy, or not?
Time synchronization clock-sync rate <> clock precision
Failure detector keep alive message frequency <> detection speed

Congestion notification probe data/rate <> measurement accuracy
In-band telemetry INT postcard volume < post-mortem analysis

62

When introducing a distributed coordination function---

578
@ To cost extra bandwidth tor efficacy, or not?
Time synchronization clock-sync rate <> clock precision
Failure detector keep alive message frequency <> detection speed

Congestion notification probe data/rate <> measurement accuracy
In-band telemetry INT postcard volume < post-mortem analysis

Is this trade-off between overhead and fidelity necessary?

63

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

.\, Ildea: Weaved Stream

-Q- . Exploit every gap (O(100ns)) between user packets opportunistically
* |Inject customizable IDLE packets carrying information across devices

65

Opportunity: < us gaps are prevalent

1001\
10010
0110

) Inter-packet gaps

Root causes?

Uncertainties in application load patterns (e.g., burstiness)
Conservative resource provisioning for peak usages
Bottlenecks at CPU processing vs network BW

TCP effects

Structural asymmetry

66

Abstraction: weaved stream

%)

Union of user AND IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets < 7

T = BiooGeps! MTU,500p = 1200

[R2 Little-to-zero overhead] Not impact user packets or power draw

67

Implement many in-network applications
(failure detection, clock sync, congestion notification...)

for free!

Crazy idea?”

Programmable in-network devices (switches, NICs)

69

Takeaway: Little-to-no impact of power draw, latency, or throughput

while guaranteeing predictability of the weaved stream!

-2
o) 10_3 w/ IDLE stream ———
N 107 ¢ w/o IDLE stream ——
E 107 |]
S) | . LL '5 ;] L] L] | .
g2 %1 Power draw onyoroaee 21 519 4\ Predictability
o 103l Maximum utilization —e— | & 107 ¢ ‘ i
g . 10-7]
g . 1 ’ ‘ ‘ | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ::g:z : (TN 1/ ‘ ‘ ']
5 10 15 20 25 30 35 40 45 50 55 60 0 20 40 60 80 100
Time [s] Packet interval [os]

800 —
— 700 | #== wio IDLE stream 2 Targetrate - - -
2 w/ IDLE stream = Maximum ——
° 288 1 oo Maximum St
g | -:qh—)l mgm
5 400 | Latency £ Scalability
S 300 o
g 200 o
d 100 - 3

0 o R ———

60 0 20000 40000 60000 80000 100000 120000
Utilization [%)] Packet 70

OrbWeaver use cases

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries

network control

Packet forensics Clock synchronization

71

Failure detection with OrbWeaver @

Before: Weak guarantee of the messaging channel

After: OrbWeaver's weaved stream abstraction guarantees maximum

inter-packet gap (120ns for 100 GbE)

, — [Tmmmmmmmemee--- il Original O Dropped x Reroute m 'g'
‘1 2 /; BFD 107 es ? oo XXaaEEEnm ﬂ
| 215t =5 e <l e o
‘ c 8 3| g
3]
%05 = * 1 o
| | | O
o = 0.0
ol 0 1 2 3 4
10G 25G 100G .
Time [xs]

Emulated failures with optical attenuators tested
under varying link speeds

Push the detection speed to its limits toward
instantaneous, self-healing failure mitigation

0.8

0.6 -

0.4

0.2

x1
2%
|

Original
OrbWeaver

Near-zero
impact!

100MB 1GB

Combining it with data-plane reroute

72

Summary

Designing efficient distributed systems primitives by exploiting the
characteristics of modern data centers:

‘ Beaver (OSDI 2024) Distributed snapshots

ﬁ Cuttlefish (WIP) Synchronous coordination

)ﬁ(OrbWeaver (NSD/ 2022) Failure detection

More opportunities for innovations with emerging data center applications (e.g.,
LLM agents) and hardware (e.g., time appliance, programmable accelerators)!

73

