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Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

Co-location in the same physical facility

Market Participants

On-premise exchange infrastructure



Interest in cloud-hosted exchange services
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System scalability and resource elasticity 
Rise of remote work  
Cost reduction and ease of management 
…
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Interest in cloud-hosted exchange services

System scalability and resource elasticity 
Rise of remote work  
Cost reduction and ease of management 
… 4

Cloud infrastructure can 
introduce unfairness!
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Outbound: simultaneous release of market data stream 
Inbound: trade processing in the order of its arrival
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Variant latencies
Different paths, congestion…
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Efforts toward communication fairness
Clock synchronization 
(CloudEx, HotOS ‘21)
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trelease + deadline
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Logical clock based on response time (RT) 
(DBO, SIGCOMM ’23)

Doesn’t handle MP-RB latency variancesHard to pre-determine the deadline

Perfect clock synchronization is hard Limited to trigger-point based trades
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…cloud execution can also incur unfairness!
Other sources of unfairness: noisy neighbors, thermal conditions of the processors…
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Synchrony is challenging, in real time
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MPj
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Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous 
delivery is impossible!
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For the same code: 
Δti ≠ Δtj

D( j, x)

D(i, x) For the same data: 
D(i, x) ≠ D( j, x)

Computation can be non-
deterministic at   
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Cuttlefish Virtual Time Overlay

Cuttlefish: A Fair, Predictable Execution Environment

Equal cloud networks 
Equal execution hardware 
…

Abstraction 

Can we eliminate variations that come from the 
cloud infrastructure?
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Outline

Conceptual foundation

Implementing virtual time overlay 

Evaluation 
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Let’s reflect on underlying model today…
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Simultaneous delivery 
is infeasible!

Δti

Δtj

Execution time can be 
non-deterministic at 
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For the same data:
D(i, x) ≠ D( j, x)δ

For the same code: 
Δti ≠ Δtjδ
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Communication and computation synchrony 
are challenging in real-time



Virtual time
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G(x)

Δvti

Δvtj
For the same code: 
Δvti = Δvtj

Let’s try virtual time domain …
Virtual time unit  some equal amount of work≡

D( j, x)

D(i, x) For the same data: 
D(i, x) = D( j, x) = vtdelivery

vtdeliveryvtdelivery

Advancing virtual time per 
‘actual amount of work’

Execution synchrony:



13

Outline

Conceptual foundation 

Implementing virtual time overlay

Evaluation 
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Implementing virtual time abstraction
Instantiate  as virtual cycles of a platform-agnostic IR/VMvt

Account and control the advancement of virtual cycles

Worker pool

Controller Controller Controller

OB & CES

( ,vcx) ( ,vci)

Auditing log

External msg

GW

Cuttlefish platform

Programming 
interface

1

Runtime 
execution

3

Virtual cycle 
tracking

2



User programming abstraction
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#include <cuttlefish_user.h>

int mp_handler(subscribed_context_t* data) {  
    if ((*data) > 100) {
        // Sell
        trade_t trade = 1;
        submit_trade(&trade);
    } else if ((*data) < 10) {
        // Buy
        trade_t trade = 2;
        submit_trade(&trade);
    }
    map_update(0, &trade);
    return 0;  
}

White-list set of 
extensible service APIs

Just-in-time trade 
submission

Narrow KV store API (e.g., lookup, 
update) for stateful invocations



MP code lifetime

16

eBPF frontend 
+ MP handler helper

Cuttlefish

Verifier

2-tier compilation with the platform agnostic IR:
Track virtual cycle (fairly) in eBPF, but execute (efficiently) on native HW target

Instrumentation
Memory

relocation

Virtual cycle 
tracking

Inline helper

mu.c

clang -target bpf

Native compiler
mu.o

JIT translator

x64 binary

r0 rax
r1 rdi

…
→
→



0000000000000000 <u_handler>:
       0: 85 00 00 00 0b 00 00 00 call 11
       1: 7b 0a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r0
       2: bf a2 00 00 00 00 00 00 r2 = r10
       3: 07 02 00 00 f8 ff ff ff r2 += -8
       4: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00   r1 = 0 ll
       6: 85 00 00 00 0a 00 00 00 call 10
       7: bf 01 00 00 00 00 00 00 r1 = r0
       8: 67 01 00 00 20 00 00 00 r1 <<= 32
       9: 77 01 00 00 20 00 00 00 r1 >>= 32
      10: b7 00 00 00 01 00 00 00 r0 = 1
      11: 55 01 01 00 00 00 00 00 if r1 != 0 goto +1 <LBB0_2>
      12: b7 00 00 00 00 00 00 00 r0 = 0

0000000000000068 <LBB0_2>:
      13: 95 00 00 00 00 00 00 00 exit

How to track and advance virtual time cycles?
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eBPF asm

Break into basic blocks for batch updates of  
JMP source, JMP destination, trade submission call

vti

; movabs r11, <vc address>
49 BB F0 DE BC 9A 78 56 34 12
; add qword ptr [r11], 2
49 81 03 02 00 00 00

Native HW asm

vti + = Δvt

 maintained by 
execution runtime

{vti}

Emit native machine code (2 x64 instr.) at the epilogue during JIT translation 
Dummy trade/heartbeat for large blocks 
Update the offsets for the (direct) JMP instructions

x64
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More details: 
Virtual time assignment algorithm 
Fault tolerance 
Handling external messages 
Security & trust discussions

Simultaneous data delivery in virtual time

CES

(data x, vtx)

(data x, vtx) RB MPMPMP
{vti}

RB MPMPMP
{vti}

Release at  vtx

Release at  vtx

Virtual time assignment

Virtual time assignment is important for efficiency! 
• What happens upon a latency spike? 
• What if some processor executions get slower?
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Runtime execution workflow

Submit trade 
(trade, vti)

Trade buffer
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Outline

Conceptual foundation 

Implementing virtual time overlay 

Evaluation
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Comparison with existing ordering schemes
Ordering mechanisms

Response Time (RT) based ordering 
FIFO ordering

Set up
Two MPs on two VMs 

 executes  additional primitive IR 
instructions than  
Market data rate: every 

MPa N
MPb

≈ 100μs

Metric
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Performance cost for fairness
Set up

100 MPs on 10 VMs 
Market data rate: every  
CX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz

≈ 100μs

More details: 
Execution throughput and latencies under processor 
disparities 
Virtual time instrumentation overhead 
Recovery under failures

+2.15 +3.08 +3.54 +12.61 +22.1



Summary
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Cuttlefish: a fair, predictable cloud-hosted exchange platform 
Abstracting out variances in cloud communication and execution hardware 
An efficient implementation runnable on commercial cloud

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay
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The interface is expressive enough
Fibonacci, Bubble Sort… 
SMA Mean Reversion 
EMA Mean Reversion 
Relative Strength Index 
Moving Average Crossover Strategy 
Bollinger Bands Strategy

Moving Average Convergence Divergence 
Multiple Moving Average Crossover Strategy 
Parabolic SAR 
On Balance Volume (OBV) + EMA 
Stochastic Oscillator 
Basic Market Making 
…

GPT


