
Cuttlefish: A Fair, Predictable Execution
Environment for Cloud-hosted Financial Exchange

1

Liangcheng (LC) Yu, Prateesh Goyal, Ilias Marinos, and Vincent Liu

Advances in Financial Technologies (AFT) 2025

MPMPMP GW

GW

CES
MPMPMP

Central Exchange Server

On-premise exchange infrastructure

Equal-length
cables

L1 fan-out
switches

2

Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

Co-location in the same physical facility

Market Participants

On-premise exchange infrastructure

Interest in cloud-hosted exchange services

3

System scalability and resource elasticity
Rise of remote work
Cost reduction and ease of management
…

4

Interest in cloud-hosted exchange services

System scalability and resource elasticity
Rise of remote work
Cost reduction and ease of management
… 4

Cloud infrastructure can
introduce unfairness!

Variances in network latencies

MP

MP

MPMP

MPMP

5

Outbound: simultaneous release of market data stream
Inbound: trade processing in the order of its arrival

RB

RB

Variant latencies
Different paths, congestion…

VM

VM

VM

Unfairness!

Central Exchange Server

CES
Market Participants

Release
Buffers

Cloud
region

6

Efforts toward communication fairness
Clock synchronization
(CloudEx, HotOS ‘21)

RB

RB

CES

MP trelease
trelease + deadline

MP RB

RB

CES

MP

MP
RT2

RT1
RT1

RT2

Logical clock based on response time (RT)
(DBO, SIGCOMM ’23)

Doesn’t handle MP-RB latency variancesHard to pre-determine the deadline

Perfect clock synchronization is hard Limited to trigger-point based trades

7

…cloud execution can also incur unfairness!
Other sources of unfairness: noisy neighbors, thermal conditions of the processors…

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

D8s_v3 E16ds_v4
F32s_v2 F72s_v2E

xe
cu

tio
n
 t
im

e
 d

iff
e
re

n
ce

 [
µ

s]

Identical programs running
on same types of VMs

MPa
VM

MPb
VM

CES

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

8

Synchrony is challenging, in real time
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous
delivery is impossible!

Δti

Δtj
For the same code:
Δti ≠ Δtj

D(j, x)

D(i, x) For the same data:
D(i, x) ≠ D(j, x)

Computation can be non-
deterministic at

(thermal condition, resource
utilization…)

O(μs)

t

t

t

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay

Cuttlefish: A Fair, Predictable Execution Environment

Equal cloud networks
Equal execution hardware
…

Abstraction

Can we eliminate variations that come from the
cloud infrastructure?

9

Outline

Conceptual foundation

Implementing virtual time overlay

Evaluation

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

Let’s reflect on underlying model today…
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Simultaneous delivery
is infeasible!

Δti

Δtj

Execution time can be
non-deterministic at

 (thermal condition, resource
utilization…)

O(μs)

t

t

t

D(j, x)

D(i, x)

For the same data:
D(i, x) ≠ D(j, x)δ

For the same code:
Δti ≠ Δtjδ

10

Wall clock time
CES

MPi

MPj

G(x)
t

t

t

Wall clock time

Let’s reflect on underlying model today…
CES

MPi

MPj

G(x)

Image source: https://haydenjames.io/the-two-generals-problem/

Simultaneous delivery
is infeasible!

Δti

Δtj

Execution time can be
non-deterministic at

 (thermal condition, resource
utilization…)

O(μs)

t

t

t

D(j, x)

D(i, x)

For the same data:
D(i, x) ≠ D(j, x)δ

For the same code:
Δti ≠ Δtjδ

11

Communication and computation synchrony
are challenging in real-time

Virtual time
CES

MPi

MPj

G(x)

vt

vt

t

Releasing data to MPs at the
same virtual delivery time

Communication synchrony:

Virtual time
CES

MPi

MPj

t

vt

vt

12

G(x)

Δvti

Δvtj
For the same code:
Δvti = Δvtj

Let’s try virtual time domain …
Virtual time unit some equal amount of work≡

D(j, x)

D(i, x) For the same data:
D(i, x) = D(j, x) = vtdelivery

vtdeliveryvtdelivery

Advancing virtual time per
‘actual amount of work’

Execution synchrony:

13

Outline

Conceptual foundation

Implementing virtual time overlay

Evaluation

14

Implementing virtual time abstraction
Instantiate as virtual cycles of a platform-agnostic IR/VMvt

Account and control the advancement of virtual cycles

Worker pool

Controller Controller Controller

OB & CES

(,vcx) (,vci)

Auditing log

External msg

GW

Cuttlefish platform

Programming
interface

1

Runtime
execution

3

Virtual cycle
tracking

2

User programming abstraction

15

#include <cuttlefish_user.h>

int mp_handler(subscribed_context_t* data) {
 if ((*data) > 100) {
 // Sell
 trade_t trade = 1;
 submit_trade(&trade);
 } else if ((*data) < 10) {
 // Buy
 trade_t trade = 2;
 submit_trade(&trade);
 }
 map_update(0, &trade);
 return 0;
}

White-list set of
extensible service APIs

Just-in-time trade
submission

Narrow KV store API (e.g., lookup,
update) for stateful invocations

MP code lifetime

16

eBPF frontend
+ MP handler helper

Cuttlefish

Verifier

2-tier compilation with the platform agnostic IR:
Track virtual cycle (fairly) in eBPF, but execute (efficiently) on native HW target

Instrumentation
Memory

relocation

Virtual cycle
tracking

Inline helper

mu.c

clang -target bpf

Native compiler
mu.o

JIT translator

x64 binary

r0 rax
r1 rdi

…
→
→

0000000000000000 <u_handler>:
 0: 85 00 00 00 0b 00 00 00 call 11
 1: 7b 0a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r0
 2: bf a2 00 00 00 00 00 00 r2 = r10
 3: 07 02 00 00 f8 ff ff ff r2 += -8
 4: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
 6: 85 00 00 00 0a 00 00 00 call 10
 7: bf 01 00 00 00 00 00 00 r1 = r0
 8: 67 01 00 00 20 00 00 00 r1 <<= 32
 9: 77 01 00 00 20 00 00 00 r1 >>= 32
 10: b7 00 00 00 01 00 00 00 r0 = 1
 11: 55 01 01 00 00 00 00 00 if r1 != 0 goto +1 <LBB0_2>
 12: b7 00 00 00 00 00 00 00 r0 = 0

0000000000000068 <LBB0_2>:
 13: 95 00 00 00 00 00 00 00 exit

How to track and advance virtual time cycles?

17

eBPF asm

Break into basic blocks for batch updates of
JMP source, JMP destination, trade submission call

vti

; movabs r11, <vc address>
49 BB F0 DE BC 9A 78 56 34 12
; add qword ptr [r11], 2
49 81 03 02 00 00 00

Native HW asm

vti + = Δvt

 maintained by
execution runtime

{vti}

Emit native machine code (2 x64 instr.) at the epilogue during JIT translation
Dummy trade/heartbeat for large blocks
Update the offsets for the (direct) JMP instructions

x64

18

More details:
Virtual time assignment algorithm
Fault tolerance
Handling external messages
Security & trust discussions

Simultaneous data delivery in virtual time

CES

(data x, vtx)

(data x, vtx) RB MPMPMP
{vti}

RB MPMPMP
{vti}

Release at vtx

Release at vtx

Virtual time assignment

Virtual time assignment is important for efficiency!
• What happens upon a latency spike?
• What if some processor executions get slower?

CES

19

Runtime execution workflow

Submit trade
(trade, vti)

Trade buffer

h

t

h

t

h

t

 vti = max(vti, vt x
d)

Affined worker threads

mu_mp3.o

mu_mp2.o

mu_mp1.o

Lock-free
SPSC rings

Command buffer

h

t

h

t

h

t

Command
dispatcher

thread

KV store VT counter

R / W

N
et

w
or

k
co

m
m

un
ic

at
io

n
st

ac
kSubscribed

data (x, vtx
d)

Runtime executor (‘scale up’)

Aggregator
thread
(polling,
sorting,

batching)

Matching
Engine

Ordering
Buffer

,
heartbeat=

{(trade, vti)}
min{vti}

20

Outline

Conceptual foundation

Implementing virtual time overlay

Evaluation

21

Comparison with existing ordering schemes
Ordering mechanisms

Response Time (RT) based ordering
FIFO ordering

Set up
Two MPs on two VMs

 executes additional primitive IR
instructions than
Market data rate: every

MPa N
MPb

≈ 100μs

Metric
Fairness ratio

 0

 20

 40

 60

 80

 100

1 100 10000

100.00 100.00 100.00

1.50 1.42

21.20

51.64

76.32

99.81

Cuttlefish
FIFO

RT

F
a
ir
n

e
ss

 r
a
tio

 [
%

]

MP instruction count difference

Same VM type

 0

 20

 40

 60

 80

 100

1 100 10000

100.00 100.00 100.00

0.02 0.01 0.012.50 3.35

99.82

Cuttlefish
FIFO

RT

MP instruction count difference

Different VM types

22

Performance cost for fairness
Set up

100 MPs on 10 VMs
Market data rate: every
CX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz

≈ 100μs

More details:
Execution throughput and latencies under processor
disparities
Virtual time instrumentation overhead
Recovery under failures

+2.15 +3.08 +3.54 +12.61 +22.1

Summary

23

Cuttlefish: a fair, predictable cloud-hosted exchange platform
Abstracting out variances in cloud communication and execution hardware
An efficient implementation runnable on commercial cloud

VMVM
VM

VMVMVM

Cuttlefish Virtual Time Overlay

24

The interface is expressive enough
Fibonacci, Bubble Sort…
SMA Mean Reversion
EMA Mean Reversion
Relative Strength Index
Moving Average Crossover Strategy
Bollinger Bands Strategy

Moving Average Convergence Divergence
Multiple Moving Average Crossover Strategy
Parabolic SAR
On Balance Volume (OBV) + EMA
Stochastic Oscillator
Basic Market Making
…

GPT

