Toward Zero-waste Terabit Networked Systems

Liangcheng (LC) Yu

& Penn

UNIVERSITY 0f PENNSYLVANIA

Ever-increasing user applications

- Q * &(S > - 5:::'28 ?lci == Application

Online Machine
Conferencing Learning

Latency-critical

Video Streaming Applications

Network systems, a packet forwarding engine

' 0 ﬁ - a(Q u - 5{;.’23 ,;0;% é Application

B Microsoft
Meta (GO g|e ama;on

e %\
101...001 NG ¥

Networks serve to forward user data

Network system

Network systems, a packet forwarding engine

' 0 * . &(@ u - 5[;.23 Sici @ Application

= Microsoft
Meta (GO g|e ama;on

G
= ﬁ
_ A

Networks serve to forward user data

Network system

Today, networks are far more complex!

Network systems: an operator’'s view

- Q * &(S > - 5:::'28 ?ﬁ é Application

thme drift Node / link Congestion
ode/ lin
h fail h DoS attack collapse
ure
. Network system
hTCP incast hNetwork hotspot BandW|_dth
starvation

Networks serve to forward user data

Today, networks are far more complex!
...must handle out-of-control events!

Network systems: an operator’s view

'in .a(@ u- 5:"’?; ;i'.ﬂ Application

@ Clock synchronization Failure @ Defense policy
mitigation
airness trol
@ Desynchronization cobtrol con

Networks serve to forward user data

Today, networks are far more complex!
...a vast array of control tasks

Net
WO
rk
Syst
ems:
>. an oper
ato ?
rs Vi
view

O
1O @C
00 -
prlme
f:t '.
@

\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

|

Net
mKNkS
se
rve to forward
USerd
ata

Tod
ay,

:newv

ork
s are far mo
rec
om
plex!

..a vas
o t arr.

..la’:netwariy of contr

d more! COmputaZ{)taSKS

n W/emergi
ng H
Wa
caye
rator
S

Today, network systems are
more than just about data forwarding!

rend toward terabit speed...

& 1.6 TbE
a.
a8 oand 400GbE @

_ aie 0% 100 GbE

5 0" 40Goe @
- 10 GbE ®

1gbe @

100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

rend toward terabit speed...

& 1.6 TbE
a.
a8 oand 400GbE @

_ e % 100 GbE

oD e ®

o <0 ° 40 GbE
- 10 GbE ®

1gbe @

100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

Great for application data transfer @

10

rend toward terabit speed...

& 1.6 TbE
a.
a8 oand 400GbE @

_ e % 100 GbE

oD e ®

o <0 ° 40 GbE
- 10 GbE ®

1gbe @

100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

Great for application data transfer @
... problematic for other tasks! ()

11

Network control function as an example

Weights, tunnels, rate
limits, ACLs...

React

= = o
< Measure Analyze
. . .~ . - Load, routes, heavy y

hitters, failures. ..

12

Network control function as an example

T -
AOR00000000000000000 -3 React
anenneeennnn ™

L Event ™,
t timescale :

!

- .7 .. Measure

> 1000 X decrease
in duration!

SN

Analyze

13

Control, fast and slow

nonanInInn C :
~ Control interval (0(100 ms))
LTI = m momomomom o

:

. Event |
{ timescale

If the control interval remains coarse-grained...

Measure

Analyze

14

Control, fast and slow

N~ A C
— Control interval (0(100 m5))
sassassassassanNin -

LT

!

¢t timescale ;

M§

Measure

If the control interval remains coarse-grained...

@ Hard to react to microscopic events

Analyze

15

Control, fast and slow

:

If were to catch up with the link speeds...

Measure

Analyze

16

Control, fast and slow

:

If were to catch up with the link speeds...

Allocate more cables, CPUs...?

Measure

Analyze

17

Control, fast and slow

!

Measure Analyze

If were to catch up with the link speeds...
Allocate more cables, CPUs...?

\u L 22%0)
@ Costs! k‘ @02

Embodied & : e
operational carbon Power & cooling Impact to existing traffic

Device purchasing

Control, fast and slow

Costs

Control, fast and slow

(=]
() (s
Performance Costs

@ Can we break this tension?

Observation: in-network waste

Observation: in-network waste

Widespread
underutilization!

Appl

ication

Physical

F: §

Vertical stacks
(HW, transport...)

Location (edge, core...) .

22

Observation: in-network waste

Widespread
underutilization!

F: §

Application
anspor Vertical stacks
Newerk = (HW, transport...)
ata link

Location (edge, core...)

ot Why not harness them to
Q support background functions?

23

(oY
SO ESE N

ion plant
insects, 3D position

Compan
ri

5
=

t, soil,

ligh

sun

s (5 - .ﬁ.«&w%sﬁ 53
s om.,.. 3 ..._. '-.a B .(:\J.mnﬁ.' 0..“..‘-& .‘

Idle resources

his talk: a zero-waste design approach

High-efficiency designs Zero-waste designs

o’y
z e

Input: the workload and the network

Input: user workload

Goal: output a network that optimizes end- Goal: maximize the utility of that network,

to-end performance metrics with minimal such as through uncovering the potential
resource usage of the widespread in-network waste

26

his talk: takeaway

In-network waste is widespread, and
in numerous forms

By exploiting domain-specific
@ underutilization, it is possible to integrate
performant functions with near-zero costs

Ethernet link IDLE cycles Bl 11

Switch CPUs

Wasted power

Memory

Spare PCle payload
Middleboxes

Performance

&

This talk
@+,

T

Cost

27

Research overview

Rethink the co-design of applications, software, and hardware to
minimize waste in networked systems

Application & ’

A management Beaver PrintQueue
[OSDI 2024] [SIGCOMM 2022]

DY) o

Control plane S ¢
Mantis Cebinae
[SIGCOMM 2020] [SIGCOMM 2022]

v Data plane @

“‘ OrbWeaver Cowbird InvisiFlow
’ [NSDI 2022] [SIGCOMM 2023] [NSDI 2025]
aw

28

Instantiations of zero-waste designs

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

Mantis (SIGCOMM 2020)
{"ﬁ Recycling switch resources for
e flexible, sub-RTT reactions distributed cloud services

Recycle Reduce

O W Beaver (OSD/ 2024)
Sl(; ‘I i Reducing ‘tax’ of partial snapshots for

29

Outline

. Reusing IDLE link cycles for in-
' ‘%’ " band control communication

P VO N

Mantis (SIGCOMM 2020)
Recycling switch resources for
e

flexible, sub-RTT reactions

Recycle

i A\, OrbWeaver (NSD/ 2022) §

Beaver (OSD/ 2024)

Reducing ‘tax’ of partial snapshots for
distributed cloud services

Reduce

30

Networks are woven from packets

* A primary goal of computer networks: delivery packets

Networks are woven from packets

* A primary goal of computer networks: delivery packets
. video streaming, web browsing, file transfer...

Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...

33

Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...

« Often, two classes of traffic multiplex the same network

34

When introducing a distributed coordination function---

578
@* To cost extra bandwidth for efficacy, or not”

Time synchronization
Failure detector
Congestion notification

In-band telemetry

35

When introducing a distributed coordination function---

[63.’@
> To cost extra bandwidth for efficacy, or not?
Time synchronization clock-sync rate <> clock precision

Failure detector
Congestion notification

In-band telemetry

36

When introducing a distributed coordination function---

[63@
v To cost extra bandwidth for efficacy, or not?
Time synchronization clock-sync rate <> clock precision

Failure detector keep alive message frequency < detection speed

Congestion notification probe data/rate < measurement accuracy
In-band telemetry INT postcard volume < post-mortem analysis

37

When introducing a distributed coordination function---

[éf»?é
v To cost extra bandwidth for efficacy, or not?
Time synchronization clock-sync rate <> clock precision

Failure detector keep alive message frequency < detection speed

Congestion notification probe data/rate < measurement accuracy
In-band telemetry INT postcard volume < post-mortem analysis

s this trade-off between overhead and fidelity necessary?

38

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

', Ildea: Weaved Stream

-Q- . Exploit every gap (O(100ns)) between user packets opportunistically
* Inject customizable IDLE packets carrying information across devices

40

Opportunity: < us gaps are prevalent

1001\

on 'o°) Inter-packet gaps ﬁ

Root causes?

» Uncertainties in application load patterns (e.g., burstiness)
« Conservative resource provisioning for peak usages
Bottlenecks at CPU processing vs network BW

TCP effects

Structural asymmetry

41

Abstraction: weaved stream @(

Union of user AND IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets < 7

T = Bioocrps!MTU 5008 = 12005

[R2 Little-to-zero overhead] Not impact user packets or power draw

42

Implement many in-network applications
(failure detection, clock sync, congestion notification...)

for free!

Crazy idea?

Extending IDLE characters to higher layers

e Data plane packet generator

e Replication engine

e Data plane programmability

e Fexible switch configuration (priorities, buffers...)

OrbWeaver: outline

1. Switch data plane architecture
2. Implementing weaved stream abstraction

3. OrbWeaver applications

RM

switch architecture

Rx MAC

L

Parser

Parser

Queueing &
Scheduling

Ingress
Pipeline

Packet
Buffer

PRE

Egress
Pipeline

=
@
>
)
3

Tx MAC 4

N ports

Strawman: blind packet generation

Rx MAC Tx MAC 4

| Parser Queueing &

!E Egress Dvdiren '

Packet

IR
= l B
o = io= . g PN I N D P 2
Plpeline >
I I '
L Y.
TN
- = = - Y - -) o e = = - e B a = = - L}
S ey e A L U e N e A e g A -
2 o a . ’ 3
¢

BU
"" . P
i

49 ‘
. 1) ‘

N/7 rate

Packet
Generator

Ll Parser)

Parser

Strawman: blind packet generation

Rx MAC Tx MAC 4

| Parser Queueing &

!E Egress Dvdiren b

Packet

- .= N - - b"
- gy N = P e e P P e Py Caied i A = e -
» e o
ipeline
SRR .
L
= i = - ooy <) g S i = - g S i = -) <
e o o v o e — TS N &7 TP _.3 po o o ol v o e e g _.3 - e oeo o S -
- . s _ Sy . y .
3
U

BU
0]
LD
0]
. 1) ‘

N/t rate | Parser .
Packet —
Generator

P Parser

Predictability even there is no user traffic @

48

Problems with blind packet generation

Rx MAC Tx MAC 4
| Parser Queueing & NortS
Q e
, | Packet | |
N/t rate +| Parser || ©.
Packet | Parser \
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

49

Problems with blind packet generation

Rx MAC

- Parser

N/t rate I [Py - -
Packet P Parser
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!

50

Problem #1: scalability

Solution: seed stream amplification

Rx MAC Tx MAC 4

| Parser \ _ N ports

Ll Parser i

2
o
—
)
=

Parser /

1/7 seed rate

Packet
Generator

Problem #2: cross-traffic contention at PRE

Rx MAC Tx MAC 4

| Parser \
5
Q

Ll Parser i

Parser /

Monopolize usage and waste PRE packet-level BW!

1/7 seed rate

Packet
Generator

52

Problem #2: cross-traffic contention at PRE

Solution: amplify seed stream on-demand

Rx MAC Tx MAC 4

| Parser \

| |
: Ingress | , |l Packet

— = 5 7| Multicast =i
Ll Parser)

= = d - a- b
9 3 PR S I
h-
5o Sy
| PSS a3
e
N
o v
Y
- N S TN 3 S sl a5 ~ Op *
P T F G N D e o Crue T B
‘-

Queueing &
cheduling

2/7 seed rate

Packet
Generator

Parser

Selective filtering
* Per-egress port bitmap indicating
packet presence in the last 7/2 cycle
* |f not, replicate an IDLE to the port

53

Problem: other contention points

2/7 seed rate

Packet
Generator

Parser

User packets may
starve SEED packets

Queueing &
Acheduling

54

Problem: other contention points

2/7 seed rate

Packet

Rx MAC Tx MAC 4

Parser

-

S i iR BT el & <. o . o o o 2o g -
ot
}
‘ S -~ e = = Ly g o~ = a <
,'- g 4 — Savec e o g S e g P | o

Generator

>

Parser

IDLE packets may
impact user packets

55

Problem: other contention points

Solution: leverage rich configuration options for priorities and buffer management

Rx MAC Tx MAC 4

Queueing & N ports

Acheduling

- Parser

2/7 seed rate | parseriirBummsimmbsnmsmmm e S = WWS.WM Lo

\vg

Packet

P Parser
Generator

User > SEED

SEED > User

» Zero impact of weaved stream predictability
« Zero impact of user traffic throughput or buffer usage
« Negligible impact of latency of user packets

56

Implementation and evaluation
Hardware prototype on a pair of Wedge 100BF-32X Tofino switches

Wattage [normalized]

Queuing time [ns]

O G (I W G Y
lefoNoNoNoNoNoNoNe!
- = NDWPrPrOIOON OO

800
700
600
500
400
300
200
100

L Baseline
Only OrbWeaver —&—
Maximum utilization ——

5 10 15 20 25 30 35 40 45 50 55 60
Time [s]

Utilization [%)]

PDF

Observed interval [ns]

10_2
107 |
107 |
107 |
10° |
107 |
10 |
107

w/ IDLE stream ——
w/o IDLE stream ——

[T/

40 60 80 100
Packet interval [«s]

Targetrate - - -
Maximum ——

A

C
0 20000 40000 60000 80000 100000 120000

Packet 57

Takeaway: Little-to-no impact of power draw, latency, or throughput

while guaranteeing predictability of the weaved stream!

_. 1.09 102 | ‘ ‘ 7
S 3 | w/ IDLE stream —— -
3 1.08 108 L
N 407l a w/o IDLE stream ———]
£ 1.06 | 107
— | . L = o] mgm I .
g 11 Power draw ony orwewver —a— | © 25|\ Predictability
o ' Maximum utilization —w— 107 ¢)]
o 1.03 107
% 1.02 8
; 101 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ::8_9 ‘ 11T ‘ ‘ :
5 10 15 20 25 30 35 40 45 50 55 60 0 20 40 60 80 100
Time [s] Packet interval [«s]
800 —
— 700 | === wio IDLE stream @ Targetrate - - -
2 mmmmm v/ IDLE stream — Maximum ——
o 000 | coooos Maximum S
g 500 } § Egm
=400 - Latency I Scalability
£ 300 1 3
e
g 200 1 B GL')
G 100 - Ty B R a
0 O e ———

60 0 20000 40000 60000 80000 100000 120000
Utilization [%] Packet 58

OrbWeaver use cases

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries
network control

Packet forensics Clock synchronization

59

OrbWeaver use cases

Fine-grained network
state inference [R1]
Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries
network control

Packet forensics Clock synchronization

60

OrbWeaver use cases

S—2 Free information Dﬂ Fine-grained network
— isseminaton [R2] state inference [R1]

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries
network control

Packet forensics Clock synchronization

61

OrbWeaver use cases

S—2 Free information Dﬂ Fine-grained network
— isseminaton [R2] state inference [R1]

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry
Y Self-healing failure detection Network queries
network control
Packet forensics Clock synchronization

62

Failure detection with OrbWeaver @

Before: Weak guarantee of the messaging channel

After: OrbWeaver's weaved stream abstraction guarantees maximum

inter-packet gap (120ns for 100 GbE)

.................. L - 0.8 1 Original
- — 5 Original © Dropped x Reroute = 8 =1 OrbWeaver
1 2 J: BFD 107 ® foooooooootoxxeames K22 06 | BFD
i | 245 =5 <los o ©
i g = g g 0.4 -
=E- 8 3| S
S T s
9 " £ 02 -
205 = 1 8
: - R I E B e
O L | | |
10G 25G 100G . 100MB 1GB
Time [«s]
Emulated failures with optical attenuators tested Combining it with data-plane reroute

under varying link speeds

Push the detection speed to its limits toward
instantaneous, self-healing failure mitigation

Near-zero
impact!

Example: time synchronization

Node A Node B

Transmit t, @)

*‘@ Cache ty, &,

_{& Transmit
t1, t2’ t3

(t2+t3)—(t7+t4)®‘

2

Example: time synchronization

Node A

Transmit t, @)

(t2+t3)—(t7+t4)®‘

2

-

Node B

*‘@ Cache ty, &,

_{& Transmit
t1, t2’ t3

Existing approaches for high precision
e Require special hardware (such as DTP)

e Require messaging overheads (such as DPTP)

Example: time synchronization

Node A Node B Existing approaches for high precision
Transmit t, @ e Require special hardware (such as DTP)

*@ Cachet,, t, * Require messaging overheads (such as DPTP)

_{& Transmit

- Pt Challenges to achieve ns precision
P2 "3

(t2+t3)—(t7+t4)®‘

e Messaging frequency v.s. clock precision
2

e |naccuracies due to queueing delays

Rx MAC

Queueing &
Scheduling

-1 Parser

Ingress Packet Egress
Pipeline > Buffer > PRE Pipeline

1 Parser

Data plane timestamps don't capture
the actual point of serialization

OrbWeaver redesign @

Key ideas:
1. Embed timestamp information in free IDLE packets [R2]

68

OrbWeaver redesign @

Key ideas:

1. Embed timestamp information in free IDLE packets [R2]

2. Selective synchronization: infer queue delay from IDLE gaps and
filter out unreliable messages [R1]

OrbWeaver redesign @

Key ideas:

1. Embed timestamp information in free IDLE packets [R2]

2. Selective synchronization: infer queue delay from IDLE gaps and
filter out unreliable messages [R1

1.0 1 Jo
0.8 r
L - :
a 0.6
O04 ¢ Medium
Heavy O
0.2 b Medium (selective) o
Heavy (selective) = = = a 10 -
0.0 e .
1 10 100 10

Offset [ns]

Achieve same or better performance with close-to-zero overheads

70

OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
» Push the utilization of IDLE cycles to its limits
« Guarantee predictability with little-to-zero overhead

71

OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
» Push the utilization of IDLE cycles to its limits
« Guarantee predictability with little-to-zero overhead

« (Generic support of a wide range of data plane applications for free
« Don't need to choose between coordination fidelity and bandwidth overhead
- Broader implications: rethink the design of distributed coordination protocols

Outline

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

(= Wiantis (Siccomm 2020 2O~ W
{”ﬁ Recycling switch resources for § SI
&= flexible, sub-RTT reactions |

Beaver (OSD/ 2024)

Reducing ‘tax’ of partial snapshots for
distributed cloud services

Reduce

73

oday’s networks react

« A common task: reacting to current network conditions
» Detecting failures and then rerouting
* |[dentifying malicious flows and then filtering
* Recognizing load imbalance and then adjusting

* In data centers, reactions need be fast

74

oday’s primitives for reaction

SDNs or conventional control loops
Flexible but slow

Built-in data plane primitives
Fast but restrictive

Programmable switches?

Constraints on operations in actions, number of stages, SRAM
accesses, egress/ingress communication, in-band match-action
updates...

75

Can we enable fine-grained reactions with
minimum latency and maximum flexibility”

A peek inside a switch chassis:

On-board CPU « More capable with higher BW switching ASICs
ONIE, Debian/ONL, SONIC

Sl

- Physical cores: 2—4—8

L g R - Underlying workloads involve out-of-band,
infrequent executions, e.g., IS-IS, BGP, RSVF,
DHCP, LLDP, SNMP

Not part of the general compute
pool, underutilized'

77

Approach

Can we enable fine-grained reactions with
minimum latency and maximum flexibility”

1. Push the reactions as close to the switch ASIC as possible

2. Co-design the data plane program with local CPUs for fine-grained
malleability and ease of use

Mantis overview

Usable, fast, and expressive in-network reactions on todays RMT switches

Simple extension to P4

Switch

(

.par

Mantis

Control Plane 1%

Geactions

‘[Compiler

Malleable
P4 Program

J

-

Arbitrary C code

10s of us

J

Generates code for ‘runtime’ reconfigurability/serializability

79

Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M2 Translation
M3 |solation

M4 Execution

80

Abstraction

1. Malleable entities
« Amenable to fine-grained reconfiguration at runtime

2. Reactions
« Package reaction logic into a C-like function

81

M1 : start with P4 code
foo.p4

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }
}
action my action() {
modify field(priority, 1)

| ; How to make it run time reconfigurable?

M1 : P4R example

foo.p4r

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }
}
action my action() {
modify field(priority, 1);
}

83

M1 : P4R example

foo.p4r

malleable value prio_var ({
width : 16; init : 1;
}

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }

}

action my action() {

modify field(priority, ${prio var});

}

Declaring malleable entities

Previous P4 code with references
to malleable entities

84

M1 : P4R example

foo.p4r

malleable value prio_var ({
width : 16; init : 1;

}

table my table {
reads { ipv4d.dst : ternary; }
actions { my action; drop; }

}

action my action() {

}

reaction my reaction|(reg re qgdepths[1:10]) {

}

modify field(priority, ${prio var});

uintlé t cur max = 0;
for (int 1 = 1; i <= 10; ++i)

}

if (re_qgdepths[i] > cur max) {
cur max = re qdepths[i];

}

if (cur_max > THRESHOLD) ({

}

${prio_var} = 5;

Declaring malleable entities

Previous P4 code with references
to malleable entities

Specifying reaction arguments

Reaction with arbitrary C

Reconfiguration

85

Malleable entities

+ Malleable value

- Malleable field (table match, action...)
+ Malleable table

Reaction function arguments

* Register

* Field

« Malleable field

Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M?2 Translation
M3 Isolation

M4 Execution

87

M2 : P4R transformation

f00.p4r

malleable value prio var {
width : 16; init : 1;
}

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }

}

action my action() {
modify field(priority, ${prio var});

}

reaction my reaction(reg re gdepths[1:10]) {
uintlée t cur max = 0;
for (int 1 = 1; 1 <= 10; ++1)
1f (re gdepths[i] > cur max) {
cur max = re gdepths[i];
1

}
if (cur max > THRESHOLD) {

${prio var} = 5;
}
}

Preparing registers for a
pull-based model

88

M2 : P4R transformation

f00.p4r

malleable value prio var {
width : 16; init : 1;
}

table my table {
reads { ipvé4.dst : ternary; }

actions { my action; drop; }
}
action my action() {
modify field(priority, ${prio var});

}

Generalize user-specified knobs for “hitless” reconfiguration

M2 : P4R transformation

-|'|'| '
Tae—p

2
12 = -

i iyl i " I
Tt & = T
P A

=<

RPN
=
. 1 .

L7

37
\4

a

1N
oy

1
table my table {
reads { ipvé4.dst : ternary; }
actions { my action; drop; }
}
action my action() {
modify field(priority, $tprie—vaxr}pdr meta .prio var);
}
header type p4r meta t {
field {prio var : 16;} .
} Replacing the malleable

metadata p4r meta t 4r meta ;
PREmeRA_t_ pRrmeRe value

M2 : P4R transformation

TY\"\-I -I ’\1(\1 TT"\-|1'| 1 o i iyl i " I
) 4 § @ R E— - L& BN N g VAL = = w § L./J__LU_V L@ g =y L
w1 A+ 1& 1+ . 1.
VA ™ "I\ Sy usp s § LIy [S R R L7
1
table my table {
reads { ipvé4.dst : ternary; }

actions { my action; drop; }
}
action my action() {
modify field(priority, $+p£}e:va£+p4r_meta_.prio_var);
}
header type p4r meta t {
field {prio var : 16;}

} Replacing the malleable

metadata p4r meta t pdr meta ;

value
table p4r init {
actions {p4r init action ;}
size : 1;
) 5 T :
¥l 30 e e, (e el ¢ Multi-purpose initialization table

modify field(p4r meta .prio var, prio_var);

}

Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M?2 Translation
M3 Isolation

M4 Execution

92

M3 : Isolation (ACID)

|Isolation matters, consider |
Mantis Agent

reaction my reaction(reg src, reg dst) {}

. Expectation: src < pq, dst « P1

. Without isolation: s¥¢c < p;, dst < p,

Mantis enforces per-pipeline, per-reaction serializable isolation

S0-080-eNen»
. Measurement E%c:keest,sing . Update

93

M3 Isolating measurement

src register dst register

NI e, i i Working copy

=

Storing field arguments values

For a register, at most one element will be updated on a packet thread
Stale values may appear in the current checkpoint for register arguments

- L > 1 @

Timestamps [; appended (F;y 1)) sessmngendii

to the duplicate buffer ' ¥ else X
Data plane : Control plane

94

M3 Isolating updates

Three-phase updates for isolating fast, repeated, partial updates

vv=0 (exact match) vw=0 vw=1

“Waich —action [N Maich __Action _ "Match —ction

hdr.a=0, vw=0 my_action(0 hdr.a=0, vw=0 my_action(0 hdra=0, vw=0 my_action(O
hdr.a=0, vwv=1 my_action(0 B hdra=0, vw=1 my_action(O ':""», hdr.a=0, vw=1 my_action(0
hdra=1, vw=0 my_action(1 hdra=1, vww=0 my_action(1 (2

(((

¥ hdra=1,w=0 my_ action

)))
)))
)) v D)

hdra=1, vw=1 my_action(1 hdra=1, vw=1 my_action(2 _ hdra=1,vw=1 my_action(2
Commit
From previous mirror phase Prepare updates in vv=1 Mirror the changes to the shadow
copy for malleable entities copy for amortization

Bounded memory overhead and predictable latency

95

Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M?2 Translation
M3 Isolation

M4 Execution

96

M4 : Mantis control plane

Traditionally data/control plane interactions are treated as one-off,

Isolated events, I.e., assumed to be “on the slow path”

Mantis control plane is instead reaction-centric

helper state = precompute metadata();
memo = setup cache (helper state);
run_user 1initialization (helper state, memo) ;

while (!stopped) {
updateTable (memo, "p4r init ", {measure ver : mv ~ 1});
read measurements (memo, mv); mv “= 1;
run_user reaction (memo, helper state, vv © 1);
updateTable (memo, "pd4r init ", {config ver : vv ~ 1});
fill shadow tables (memo, vv); vv %= 1;

~PCle latency of the underlying system

Prologue

Dialogue

Implementation and evaluation

Prototype implementation on a Wedge100BF-32X Tofino switch
* P4R frontend: Flex/Bison based, ~5000 lines of C++ and grammar
« Mantis agent: dynamic (re)loading of user reaction (.so object)

98

Implementation and evaluation

Prototype implementation on a Wedge100BF-32X Tofino switch
* P4R frontend: Flex/Bison based, ~5000 lines of C++ and grammar
« Mantis agent: dynamic (re)loading of user reaction (.so object)

Evaluation

« How fast is Mantis’s reaction time?

« What is the overhead?

« What are the applications of Mantis?

« How does Mantis compare to existing alternatives?

99

Use cases

Hash polarization Reinforcement

DoS mitigation Route Recomputat/onm/.ﬁga Hon Learning

Packet counts and
queue depths

a Flow signature,
—— Measurement packet count

———

Heartbeat counts,
§ timestamp

£ Queue depths of ECMP §
§ ports 4

Use a Q-learning
algorithm to calculate
the optimal ECN
threshold based on
rewards

, Block the sender if
O Control logic the estimated flow
Wy} Size exceeds a
threshold

number is small than t
§ expected after persistent imbalance of §

 port utilization

Change ECN
malleable value

@ Reconfiguration Drop the malicious
traffic for the

blocked senders ,
i permutation

100

Flow size estimation

 Evaluation setting
» CAIDA traces, 20s chunk, 10Gbps link of ISP

backbone '03 250 ' Data Plane Hash Table [8192]
« Arguments = o 200 F - \ 2\ Data Pgme Hﬁlﬂsh gible 41[2:1383%
. o B = 2 S - ount-Min Sketc
placket source |IP and packet counter = A - =% <~ Count-Min Sketch [16384] - —
* Algorithm c M 150 | ~ o sFlow [1:30k] - -
s s o'm \ ~ Mantis
. . ft _fto -'(_U' ; 100 | N > ~
. Estimation formula ——— EL8 \ N ~
. L=l 85 50| - .o
. 1y: timestamp when first observe the flow o2 \\\ - . /
« Mantis sampling rate: every 10us, ~1 in 5 packets < 0 e —
10 100 1000 10000 100000

Actual flow size [packets]

101

Mantis achieves fast reaction times

100 r
80
60
40
20
o
4 8 12162024 28 32

Total state [B]
a: Reaction argument

Field —&3—
- Register —o0—

Latency [us]

Latency [us]

Fi(1 tbiMod) +) <Fa(a)>+C+ >

acargs retbIMods

100 Table —3—
80 |Value/Field

60

40

20

of 000

1 3 &5 7 9 11

Number of accesses
b: Malleable entity update

<2Fb(l)) + 2F(Njpjt — 1) + Fp(1 tbiMod)

End-to-end reaction time: 10s of us

102

Mantis CPU overhead

A dialogue loop occupies up to a single core but can be throttled

— 1, ~
n 60 t
= 50 | X 0.8 |fJ
GE) 40 | WL 06 Li Latency penalty
= 30| T a median: ~4.64%
S T O 04 i 099: ~6.45%
= 20 _ 02 Li w/ Mantis
s 10 - -« '] w/o Mantis = -
&J 0 % @ O] | | | | |

0O 20 40 60 80 100 200 250 300 350 400 450

Utilization [%] Latency [us]

Overall, Mantis can co-exist with other functionalities

103

Summary

+ Fine-grained reaction to network statistics as first class citizen

* P4R interface to simplify the encoding of serializable
» Generic support of sub-RTT reactive behaviors

Mantis can be used for...

« Encoding flexible control logic

« Workarounds of current limitations pdr
« Reducing memory overhead via offloading

- Data/control plane co-design

O https://github.com/eniac/Mantis

reaction

Switch

Mantis
Control Plane

Reactions

7 ¥

Malleable
P4 Program

)

J

104

Outline

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

4
.

8

Beaver (OSDI/ 2024)
Reducing ‘tax’ of partial snapshots for
distributed cloud services {

Mantis (SIGCOMM 2020)
Recycling switch resources for
e

flexible, sub-RTT reactions

Recycle ~ Reduce §

105

| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

—>
Message(-

]
receive States
. m

EE
EE

Computat:o
step

H
States

106

| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message

Computat:o
step

Snapshots are useful!

G

Network telemetry Distributed software Deadlock detection Checkpointing and
debugging failure recovery

107

Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)

108

Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)

In|t|at|on
€s

m Taadin
Node O ! \gg g

‘ Snapshot

Node 1 Consistent cut triggering

Guarantee of causal consistency @

For any event e in the cut, ife’ — e (Lamport’s ‘happened before’), e’ is in the cut.
y

109

Classic snapshots operate in an isolated universe

7T

b” \

Node 1 Consistent cut

Utopian: isolated ‘universe’ of nodes

Fundamental assumption:
The set of participants are closed under causal propagation.

@ Unfortunately, the assumption
mismatches the real-world scenarios!

110

he assumption rarely matches reality!

6%

Modul _ Instrumentation
. oduiar services -
constraints
o] My service
Utopian: isolated ‘universe’ of nodes] E O
$ \all
—
Costs and Hidden causality

overheads due to human

he assumption mismatches the reality!

@ Unrealistic to assume zero external interaction
Impractical to instrument all processes

Consequences?

Frontend
‘ An external node
Hidden causal relationship. ey < €,
:
®
o f
Backend O A

e, In snapshot, yet ey not in snapshot!
o ta] [
2 Q

Backend 1 No longer consistent!

Nodes of interest

@ A single external node can break the guarantee!

113

Can we capture a causally consistent snapshot when
a subset of the broader system participates”

Beaver: practical partial snapshots

Out-group nodes
(Nodes without control)

@ The same causal consistency abstraction

'i@ Even when the target service interact with external,
— black box services (arbitrary number, scale, placement,

or semantics) via arbitrary pattern (including multi-hop

Arbitrary interactions propagation of causal dependencies)

B %. ® @ Zero impact over existing service traffic

That is, absence of blocking or any form of delaying
operations during distributed coordination
In-group nodes
(Nodes with VIPs of interest)

115

How Is it even possible without coordinating
machines external to those of interest?

— — ———— ~—~—

'Q' Build a dam like a Beaver! ‘

4

116

ldea 1: Gateway (GW) indirection

e Out-group

’ Beaver’s gateway (GW) indirection:

1. Initiate GW to enter snapshot out-of-band
. 2. Mark inbound packets correspondingly

In-group

Frontend

Gateway

m
Backend O

S
Backend 1 \\So

Before: inconsistent cut at O (after e,)

With GW: consistent cut at O (before e,)

117

Formalizing idea 1: Monolithic Gateway Marking

Theorem 1. With MGM, a partial snapshot Cpgy for PnC P
is causally consistent, that is, Ve € Cpap, if e.peP"Ae —e,
then €' € Cpar.

Proof. Lete.p = pf” ande'.p= pi-”. There are 3 cases:
1. Both events occur in the same process, i.e., i = j.
2. i # j and the causality relationship ¢’ — e is imposed

purely by in-group messages. H | d . f . h
3. Otherwise, the causality relationship ¢ — e involves at O S eve n | t re at | n g t e O U t_ g ro U p
least one p € P,

In cases (1) and (2), the theorem is trivially true using n Od eS aS b | aC k boxes

identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e € Cparr) A (Fe’ — €) but (¢ ¢ Cpapr). With (3),
¢’ — e means that there must exist some e (at an out-group
process) satisfying ¢’ — e® — e. Now, because €’ ¢ Cparr,

we know e;f,._,, — €' or e;{._,, = ¢, that is, pg."’s local snapshot SUffICIGﬂt tO only Observe the

J J
happened before or during ¢’. Combined with the fact that the
gateway is the original initiator of the snapshot protocol, we '
Know that 8 ¢/ > e . Inbound messages
We can focus on a subset of the above causality chain:
e; — e. From the properties of the in-group snapshot proto-
col, e — e implies that e ¢ Cpap:.
This contradicts our original assumption that e € Cpgr,! [

Formal proof in paper

118

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?

Challenge 2 How to handle asynchronous GWs?

119

Challenge 1: instantiating GWs

@ Rerouting all inbound traffic through the GW is costly
Q Cloud data centers already place layer-4 load balancers (SLBs)

Internet

Data center fabric

Repurpose SLBs for in-situ marking
SLBVIP1 | I\, °SLBV|P2 @
. . Inter-VIP

Wy lnfiey e i %%

VIR 1 VIP 2

120

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

121

Implications of muiltiple SLBs

Out-group
Frontend 1 J

GW 1 hasn't initiated the new
snapshot mode to mark it,
triggering the violation

\ f

B /

]
Backend 1 ‘&o

e, in snapshot, yet ¢, that leads to it is not, inconsistent!

Backend O

&
Inconsistent™

o o o
==
[—]|[=]

[—=l|l=]|l=]

In-group

122

Handling multiple GWs: design space

How about blocking messages to ‘atomically’ trigger all SLBs?

& > .
) ‘ Can we get both consistency

~" Blocking and zero cost?
Correct but costly

Consistency

- Non-blocking -@- Optimistic Gateway Marking (OGM
y g
Consistency violation { Intuition & formalism

>

Cost ,
Mechanism

123

Challenge 2: handling multiple SLBs

Reflection: Beyond worst cases, when and how often does the violation occur?

Frontend

Time gap between
SLB initiation points

Out-group

In-group

Observation:

Causally relevant messages are rare!
GW—in-group—out-group—GW (external
causal chain)

Intuition: the resulting snapshot is consistent
1. if «% is large enough
2. or if % is ‘close’ enough

124

Theorem: if «» < «», the partial snapshot is consistent!

“—r =
+“—r =

Time gap between initiator-to-SLB one-way delays
Time to form an external causal chain (GW— in-group— out-group— GW)

Theorem 2. In a system with multiple asynchronous gateways,
let the wall-clock time of the first and last gateway snapshots
be e, = mings(eg'.t) and eg,,, = maxes(eg'.t), respec-
tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
8,8 €G, peP" and g € P*. If €5,,1 — Emnint < Tmins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (€ € Cparr) A (e’ — €) but (€' & Cparr). As before,
there must be some chain ¢’ — e® — e — e. Because ¢’ ¢
Cpart, We have e;;,, —é or e;j,, =¢/, that is, pj." must have

been triggered dirjectly or indjlfectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as . By the definition of T,;,, we have e8.f — e t>
Tmin > Cax-t — €gmin-1. Thus, at event ef, the gateway must
have already initiated the snapshot and will mark e8.m before
forwarding. This results in e ¢ C, "part> & contradiction! O

Formal proof in paper

Theorem: if «» < «», the partial snapshot is consistent!

<
-

Theorem 2. In a system with multiple asynchronous gateways,

Time gap between initiator-to-SLB one-way delays
B B . let the wall-clock time of the first and last gateway snapshots
Time to form an external causal chain (GW— in-group— out-group— GW) be €y = mins (65 and S~ man (€5, respec

tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
88 €G, pEP", and g€ P. If epy ot — €35t < Tonins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
ttlgSmJlart 0 The remlth earethre wth(3)

Observation: condition holds in most cases anyway! m e A

ere must be some ham — e —>eg—) B e¢
Cpart, we hav e‘ﬂ,,—) p,-_ /, that is, pmuth

<% can approximate zero < /S relatively high “““ ;;;;nﬁiu;j

h a]:edymlt tzdth phtandwllma:k mbf
forwarding. This r¢ ultm & Cpart, a contradictiol D

« SLBs share the same region Formal proof in paper

> 3 trips through the fabric

* Proper placement of controller * Higher when the out-group is in
another DC or Internet

Optimistic execution in common cases

Optimistic Gateway /
Marking (OGM) \

Verification/rejection of
snapshots under worst cases

How does Beaver detect a snapshot violation?

Theorem: if «» < «», the partial snapshot is consistent

4¥» = Time gap between initiator-to-SLB one-way delays
4+ = [ime to form an external causal chain (GW— in-group— out-group— GW)

‘Q’ 1. Determine the lower bound of «+ statically

2. Measure a safe upper bound for <+ online using a single clock

@ False positives is fine as one can always retry!

127

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

Idea 3: Optimistic Gateway Marking (OGM)
» Optimistic execution in common cases
» Verification/rejection of snapshot under worst cases

128

More details about Beaver’s protocol...
* Synchronization-free snapshot veritication

» Supporting parallel snapshots

- Handling failures

- Handling packet loss, delay, and reordering

Implementation and evaluation

SLB-associated workflow

« Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch 54048-ON

e Core SLB functions in DPDK: ~1860 LoC

- Backend server functions in XDP and tc: ~1040 LoC O
="

Data center A

= . Layerswitches
Beaver protocol integration ,\
« Minimal logic: (1? 68 LoC for SLB DPDK data path logic (2) 102 eDarB /|\ % a
LoC for eBPF at in-group VMs So = =0
Topology

SLBs Controller Backend servers
Backend servers

(w/ in-group VIP)
« Support typical communication patterns

« Possible out-group locations: within the same DC, DC at a
different region, or on the Internet

« Scale up to 16 SLB servers and 1024 backend applications

130

Detalls in the paper---

6000
5000
4000
3000
2000
1000

Snapshot frequency [Hz]

0 128 256 384 512 5A0 768 896 1024
of VMs

(a) w/o parallelism

Beaver supports fast snapshot rates J

Snapshot frequency [Hz]

300000
250000 -
200000 -
150000 -

100000 K k3 2 b e
::' Pt B |
4 .:..: :::‘: : : A
3351 oot Bossd b
3 1% B kXY

50000
0 3825963845126407688961024
of VMs
(b) w/ parallelism

OO
X
2ok

%5

S

D
)

X
i

>

&
X

K
o

.

0
.0

.

)
-

e

55

252585

(O
O
;0'0

%o

Y,
o4
o

.

b
*

e

o0 %%

>

o
‘0

2,
0

-
2
>

%

.
"%
e

L,

O
X0

o
TR

()
5%
X

>
o

55
&%
X

5252508
%
Z

®,
».
6%

0

X

o
TS

5%

%

2

55
%
)%
‘.
%

.
».
.
o

%
.

)
)
fole!

.
ol

CAR
.00,
A
.00
XX

0

X

O
250
%

1.2
14
0.8 A

) g

0.4 -w/o Beave.r x3
0.2 W/ Beaver =2

0

Normalzied throughput

20 40 60 80
Load [%]
(a) Stressed workloads

Normalized performance

1.2
1 T o g -2 T 8
8 B R
N .. s+ N
0.8 i §

o KBKE 5
0.6 Throughput w/o Beaver 3

0.4 Throughput w/ Beaver &3
' p99 latency w/o Beaver 2
0.2 99 latency w/ Beaver &
oL B R A
wixed-BW g jtensiVeg jprensive
Workload
(b) YCSB benchmarks

Beaver incurs zero impact

Effective snapshot rate [%]

o 8 &8 8 8

8

Beaver rejects snapshots infrequentIyJ

R R R R

$767070707474707070°0 7407000 000
VO eT e Y e e ee e

be
ke
ke
K
ke
ke
ke
K
ke
ke
ke
ke
ke
ke
ke
Ke
ke
ke
&
s

2768 5536 131072
Snapshot frequency [Hz]

w

Tmin 1
0.8 .
0.6 1
. i
04 inraDC ——
Inter- —
02 ! Internet
0 i i 4
10' 10? 10° 10* 10°
Time window [us]

Browser
client

GPU
backend
GPU
backend

Use cases: integration testing, service

Region B (out-group)

........

Replication

In-group %

........

|

analytics, deadlock detection, garbage
collection...

V.

108

131

Example: garbage collection for ephemeral storage

Backend

S

Backend

put/get/deref
— Bg

Ephemeral

storage

In-group

132

Example: garbage collection for ephemeral storage

put/get/deref
> % @ Ephemeral

storage

Lambda life time

llllllllllllllllllllllllllll

e Sy -
S WA W A .

2

+1 -1
Backend In-group

133

Example: garbage collection for ephemeral storage

put/get/deref @ remera

@ storage
Lambda life time
)’1 :‘lllIllllllllllllllllll...:- Strawman
Invoke/ ""\"======frummmmnmnnnn 'Y
PR /f\ """ 'f \ Reference count = 0, unsafe recycle

'.\/' \/A\J \ decision of k!

=

_>%

get(k) deref(k) deref(k)

S AR W A 2

17 .
Backend X/x;’ X Reference count = 1, safe decision
S e 81,7 recognizing open reference to k

e’ +1e -1
Backend ’ %o In-group

134

Beaver: summary

The first partial snapshot protocol that extends classic distributed
snapshots in practical cloud settings

Guarantees causal consistency while incurring minimal changes and
overheads

Key idea: Exploit data center characteristics (e.g., unique topologies)

Vision: toward zero-waste networked systems

Insatiable application demand Increasing energy consumption

dxxb
@02 Embodied carbon is also a major contributor!

0“ Grand challenge: Push the wastes in
’-’ computing infrastructure to their limits

136

Vision: toward zero-waste networked systems

Tight coupling IDLE resources, e.q., for performant network control
9%
’. " « Can we repurpose the underutilized resources for integrating network tasks?

« Or, how to reduce the wasted consumption to its limits (e.q., power)?

- Can we enable an asynchronous IDLE channel for executing tax functions?
« How to exploit the growing heterogeneity in hardware accelerators?

Restructuring systems stacks for efficient ‘tax’ functions
=$

« How to specialize the stack leveraging the predictability in emerging workloads/primitives?
- Can we simplify and break the current layering architecture while ensuring modularity?
- Beyond cross-layer design, what does that ‘post-layering’ architecture look like?

§ Rethinking classic layering principle for a clean-slate redesign

137

