
L i a n g c h e n g (L C) Y u

Toward Zero-waste Terabit Networked Systems

1

Application

2

Online
Conferencing Video Streaming Latency-critical

Applications
Machine
Learning

Ever-increasing user applications

Application

3

101…001

Networks serve to forward user data

Network system

Network systems, a packet forwarding engine

Application

4

Networks serve to forward user data

Today, networks are far more complex!

Network system

Network systems, a packet forwarding engine

Network systems: an operator’s view

Application

5

Networks serve to forward user data

Today, networks are far more complex!

Network system

…must handle out-of-control events!

Congestion
collapse

TCP incast Network hotspot

DoS attack

Bandwidth
starvation

Time drift Node / link
failure

Network systems: an operator’s view

Application

6

101…001

Networks serve to forward user data

Today, networks are far more complex!

Network system

…a vast array of control tasks

Congestion
control

Clock synchronization

Desynchronization

Load balancing

Defense policyFailure
mitigation

Fairness
control

Network systems: an operator’s view

Application

7

101…001

Networks serve to forward user data

Today, networks are far more complex!

Network system

…a vast array of control tasks

Congestion
control

Clock synchronization

Desynchronization

Load balancing

Defense policyFailure
mitigation

Fairness
control

…and more!
…in-network computation w/ emerging HW accelerators

Network systems: an operator’s view

Application

8

101…001

Networks serve to forward user data

Today, networks are far more complex!

Network system

…a vast array of control tasks

Congestion
control

Clock synchronization

Desynchronization

Load balancing

Defense policyFailure
mitigation

Fairness
control

…and more!
…in-network computation w/ emerging HW accelerators

Today, network systems are
more than just about data forwarding!

The speed of networking is outpacing many others

9

Trend toward terabit speed...

The speed of networking is outpacing many others

10

Trend toward terabit speed...

Great for application data transfer

The speed of networking is outpacing many others

11

… problematic for other tasks!

Trend toward terabit speed...

Great for application data transfer

12

Network control function as an example
React

Measure Analyze
Load, routes, heavy

hitters, failures…

Weights, tunnels, rate
limits, ACLs…

12

13

Network control function as an example
React

Measure Analyze

13

Event
timescale

decrease
in duration!

> 1000 ×

14

Control, fast and slow
React

Measure Analyze

14

Event
timescale

Control interval (O(100))ms

If the control interval remains coarse-grained…

15

Control, fast and slow
React

Measure Analyze

15

Event
timescale

Control interval (O(100))ms

If the control interval remains coarse-grained…
Hard to react to microscopic events

Mismatch!

16

Control, fast and slow
React

Measure Analyze

16

Event
timescale

If the control interval remains coarse-grained…
Hard to react to microscopic events

Control interval

If were to catch up with the link speeds…

17

Control, fast and slow
React

Measure Analyze

17

Event
timescale

If the control interval remains coarse-grained…
Hard to react to microscopic events

Control interval

If were to catch up with the link speeds…
Allocate more cables, CPUs…?

18

Control, fast and slow
React

Measure Analyze

18

Event
timescale

If the control interval remains coarse-grained…
Hard to react to microscopic events

Control interval

If were to catch up with the link speeds…

Costs!
Power & cooling

Embodied &
operational carbonDevice purchasing Impact to existing traffic

Allocate more cables, CPUs…?

19

Control, fast and slow
React

Measure Analyze

19

Event
timescale

If the control interval remains coarse-grained…
Hard to react to microscopic events

Control interval

If were to catch up with the link speeds…
Allocate more resources (cables, CPUs…)?

Costs!
Power & cooling

Embodied &
operational carbonDevice purchasing Impact to existing traffic

Performance Costs

20

Control, fast and slow
React

Measure Analyze

20

Event
timescale

If the control interval remains coarse-grained…
Hard to react to microscopic events

Control interval

If were to catch up with the link speeds…
Allocate more resources (cables, CPUs…)?

Costs!
Power & cooling

Embodied &
operational carbonDevice purchasing Impact to existing traffic

Can we break this tension?

Performance Costs

Observation: in-network waste

21

IDLE cycles

Observation: in-network waste

22

IDLE cycles
Widespread

underutilization!

Tim
e (

)

ms, μ
s

Location (edge, core…)

Vertical stacks
(HW, transport…)

Observation: in-network waste

23

Why not harness them to
support background functions?

IDLE cycles
Widespread

underutilization!

Tim
e (

)

ms, μ
s

Location (edge, core…)

Vertical stacks
(HW, transport…)

A case of intercropping in farm systems…

24

A case of intercropping in farm systems…

25

Cash plant
(primary)

Companion plant

Idle resources: sun light, soil, water, insects, 3D position…

Zero-waste designs

This talk: a zero-waste design approach

26

High-efficiency designs

Input: user workload
Goal: output a network that optimizes end-
to-end performance metrics with minimal
resource usage

Input: the workload and the network
Goal: maximize the utility of that network,
such as through uncovering the potential
of the widespread in-network waste

This talk: takeaway

27

By exploiting domain-specific
underutilization, it is possible to integrate
performant functions with near-zero costs

Pe
rfo

rm
an

ce

Cost

Te
nsio

n

This talk

2

In-network waste is widespread, and
in numerous forms

Ethernet link IDLE cycles

Switch CPUs

Wasted power

Memory

Spare PCIe payload

Middleboxes

…

1

28

Rethink the co-design of applications, software, and hardware to
minimize waste in networked systems

Research overview

OrbWeaver
[NSDI 2022]

Mantis
[SIGCOMM 2020]

Cebinae
[SIGCOMM 2022]

PrintQueue
[SIGCOMM 2022]

Cowbird
[SIGCOMM 2023]

Control plane

Data plane

Application &
management Beaver

[OSDI 2024]

InvisiFlow
[NSDI 2025]

29

Instantiations of zero-waste designs

Zero-waste
designs

OrbWeaver (NSDI 2022)
Reusing IDLE link cycles for in-

band control communication

Reuse

Recycle

Mantis (SIGCOMM 2020)
Recycling switch resources for

flexible, sub-RTT reactions

Reduce

Beaver (OSDI 2024)
Reducing ‘tax’ of partial snapshots for

distributed cloud services

30

Outline

Zero-waste
designs

OrbWeaver (NSDI 2022)
Reusing IDLE link cycles for in-

band control communication

Reuse

Recycle

Mantis (SIGCOMM 2020)
Recycling switch resources for

flexible, sub-RTT reactions

Reduce

Beaver (OSDI 2024)
Reducing ‘tax’ of partial snapshots for

distributed cloud services

• A primary goal of computer networks: delivery packets

31

Networks are woven from packets

• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…

32

Networks are woven from packets

• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…
• Non-user application: control messages, probes about network

state, keep alive heartbeats…

33

Networks are woven from packets

• A primary goal of computer networks: delivery packets
• User application: video streaming, web browsing, file transfer…
• Non-user application: control messages, probes about network

state, keep alive heartbeats…

• Often, two classes of traffic multiplex the same network

34

Networks are woven from packets

To cost extra bandwidth for efficacy, or not?

35

When introducing a distributed coordination function…

Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

36

clock-sync rate clock precision↔Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

To cost extra bandwidth for efficacy, or not?

When introducing a distributed coordination function…

37

clock-sync rate clock precision
keep alive message frequency detection speed

probe data/rate measurement accuracy
INT postcard volume post-mortem analysis

↔
↔

↔
↔

Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

To cost extra bandwidth for efficacy, or not?

When introducing a distributed coordination function…

38

clock-sync rate clock precision
keep alive message frequency detection speed

probe data/rate measurement accuracy
INT postcard volume post-mortem analysis

↔
↔

↔
↔

Is this trade-off between overhead and fidelity necessary?

Time synchronization
Failure detector

Congestion notification
In-band telemetry

…

To cost extra bandwidth for efficacy, or not?

When introducing a distributed coordination function…

To consume extra bandwidth for efficacy, or not to?

39

When introducing an in-band control function…

clock-sync rate clock precision
keep alive message frequency detection speed
probe data/rate measurement accuracy
INT postcard volume post-mortem analysis

↔
↔

↔
↔

Time synchronization
Failure detector

Congestion notification
In-band telemetry

Is this trade-off between fidelity and overhead necessary?

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

• Exploit every gap () between user packets opportunistically
• Inject customizable IDLE packets carrying information across devices

O(100ns)

40

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency…)?

Idea: Weaved Stream

Opportunity: gaps are prevalent< μs

41

Inter-packet gaps

Root causes?
• Uncertainties in application load patterns (e.g., burstiness)
• Conservative resource provisioning for peak usages
• Bottlenecks at CPU processing vs network BW
• TCP effects
• Structural asymmetry
• …

42

Abstraction: weaved stream
Union of user AND IDLE (injected) packets

τ = B100Gbps /MTU1500B = 120ns

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

43

Abstraction: weaved stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Implement many in-network applications
(failure detection, clock sync, congestion notification…)

for free!

44

Abstraction: weaved stream

τ = B100Gbps /MTU1500B = 120ns

Union of user and IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets ≤ τ

↔
 ≤ τ

[R2 Little-to-zero overhead] Not impact user packets or power draw

Extending IDLE characters to higher layers
• Data plane packet generator
• Replication engine
• Data plane programmability
• Flexible switch configuration (priorities, buffers…)

Crazy idea?

1. Switch data plane architecture

2. Implementing weaved stream abstraction

3. OrbWeaver applications

45

OrbWeaver: outline

 portsN

Ing. Arbiter

…
Parser

Parser

Ingress
Pipeline

Rx MAC

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

46

RMT switch architecture

101…001

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer rateN/τ

 portsN

47

Strawman: blind packet generation

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer rateN/τ

Predictability even there is no user traffic

 portsN

48

Strawman: blind packet generation

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

 portsN

 rateN/τ

49

Problems with blind packet generation

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

 portsN

 rateN/τ

50

Problems with blind packet generation

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate1/τ

 portsN

51

Problem #1: scalability
Solution: seed stream amplification

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate1/τ

 portsN

Monopolize usage and waste PRE packet-level BW!

52

Problem #2: cross-traffic contention at PRE

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate2/τ

 portsN

Selective filtering
• Per-egress port bitmap indicating

packet presence in the last cycle
• If not, replicate an IDLE to the port

τ/2

53

Problem #2: cross-traffic contention at PRE
Solution: amplify seed stream on-demand

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate2/τ

 portsN

User packets may
starve SEED packets

54

Problem: other contention points

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate2/τ

 portsN

IDLE packets may
impact user packets

55

Problem: other contention points

Ing. Arbiter

…
Parser

Parser

Parser

Ingress
Pipeline

Rx MAC

Packet
Generator

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer Multicast

 seed rate2/τ

 portsN

SEED > User
User > SEED

56

Problem: other contention points
Solution: leverage rich configuration options for priorities and buffer management

• Zero impact of weaved stream predictability
• Zero impact of user traffic throughput or buffer usage
• Negligible impact of latency of user packets

Hardware prototype on a pair of Wedge100BF-32X Tofino switches

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

PD
F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000
O

bs
er

ve
d

in
te

rv
al

 [n
s]

Packet

Target rate
Maximum

57

Implementation and evaluation

Hardware prototype on a pair of Wedge100BF-32X Tofino switches

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
at

ta
ge

 [n
or

m
al

iz
ed

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

 0 20 40 60 80 100

PD
F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

0
100
200
300
400
500
600
700
800

20 40 60 80

Q
ue

ui
ng

 ti
m

e
[n

s]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum τ

 0 20000 40000 60000 80000 100000 120000
O

bs
er

ve
d

in
te

rv
al

 [n
s]

Packet

Target rate
Maximum

58

Implementation and evaluationTakeaway: Little-to-no impact of power draw, latency, or throughput
while guaranteeing predictability of the weaved stream!

Power draw

Latency Scalability

Predictability

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Self-healing failure detection

Packet forensics

Network queries

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

59

OrbWeaver use cases

Fine-grained network
state inference [R1]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

Self-healing failure detection Network queries

60

OrbWeaver use cases

Fine-grained network
state inference [R1]

Free information
dissemination [R2]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

Self-healing failure detection Network queries

61

OrbWeaver use cases

Fine-grained network
state inference [R1]

Free information
dissemination [R2]

Performance aware routing Flowlet load imbalance

Microburst detection

Consistent replicas

Header compression

Packet forensics

Network queries

Clock synchronization

Event-based
network control

Latency
localization

In-band telemetry

Self-healing failure detection Network queries

62

OrbWeaver use cases

Push the detection speed to its limits toward
instantaneous, self-healing failure mitigation

Before: Weak guarantee of the messaging channel
After: OrbWeaver’s weaved stream abstraction guarantees maximum
inter-packet gap (120ns for 100 GbE)

63

Failure detection with OrbWeaver

 0

 0.5

 1

 1.5

10G 25G 100G

D
et

ec
tio

n
tim

e
[µ

s] BFD 105 µs

Emulated failures with optical attenuators tested
under varying link speeds

0.0

0.2

0.4

0.6

0.8

100MB 1GB

C
om

p.
 T

im
e

[s
ec

] Original
OrbWeaver

BFD

1

3

5

 0 1 2 3 4

< 1µs

Pa

ck
et

 /
µ

s

Time [µs]

Original Dropped Reroute

Combining it with data-plane reroute

Near-zero
impact!

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3
t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Traditional two-way protocol

64

Example: time synchronization

Existing approaches for high precision
• Require special hardware (such as DTP)
• Require messaging overheads (such as DPTP)

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3
t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Traditional two-way protocol

65

Example: time synchronization

Existing approaches for high precision
• Require special hardware (such as DTP)
• Require messaging overheads (such as DPTP)

Challenges to achieve ns precision
• Messaging frequency v.s. clock precision
• Inaccuracies due to queueing delays

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3
t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Traditional two-way protocol

66

Example: time synchronization

Example: time synchronization

Existing approaches for high precision
• Require special hardware (such as DTP)
• Require messaging overheads (such as DPTP)

Challenges to achieve ns precision
• Messaging frequency v.s. clock precision
• Inaccuracies due to queueing delays

(t2+t3)-(t1+t4)
2o =

Node A Node B

t1
t2

t3
t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Ing. Arbiter

…
Parser

Parser

Ingress
Pipeline

Rx MAC

Egress
PipelinePRE

Queueing &
Scheduling

Tx MAC

Packet
Buffer

Data plane timestamps don’t capture
the actual point of serialization

67

Key ideas:
1. Embed timestamp information in free IDLE packets [R2]

68

OrbWeaver redesign

Key ideas:
1. Embed timestamp information in free IDLE packets [R2]
2. Selective synchronization: infer queue delay from IDLE gaps and

filter out unreliable messages [R1]

69

OrbWeaver redesign

Achieve same or better performance with close-to-zero overheads

Key ideas:
1. Embed timestamp information in free IDLE packets [R2]
2. Selective synchronization: infer queue delay from IDLE gaps and

filter out unreliable messages [R1]

0.0
0.2
0.4
0.6
0.8
1.0

 1 10 100

C
D

F

Offset [ns]

Medium
Heavy

Medium (selective)
Heavy (selective)

100
101
102
103
104
105

DPTP-OW DPTP
PTP(15ms)

PTP(750ms)

Pr
ec

is
io

n
[n

s]

70

OrbWeaver redesign

71

OrbWeaver: summary

• Weaved stream abstraction to harvest IDLE cycles
• Push the utilization of IDLE cycles to its limits
• Guarantee predictability with little-to-zero overhead

• Weaved stream abstraction to harvest IDLE cycles
• Push the utilization of IDLE cycles to its limits
• Guarantee predictability with little-to-zero overhead

• Generic support of a wide range of data plane applications for free
• Don’t need to choose between coordination fidelity and bandwidth overhead
• Broader implications: rethink the design of distributed coordination protocols

72

OrbWeaver: summary

73

Outline

Zero-waste
designs

OrbWeaver (NSDI 2022)
Reusing IDLE link cycles for in-

band control communication

Reuse

Recycle

Mantis (SIGCOMM 2020)
Recycling switch resources for

flexible, sub-RTT reactions

Reduce

Beaver (OSDI 2024)
Reducing ‘tax’ of partial snapshots for

distributed cloud services

• A common task: reacting to current network conditions
• Detecting failures and then rerouting
• Identifying malicious flows and then filtering
• Recognizing load imbalance and then adjusting

• In data centers, reactions need be fast

74

Today’s networks react

SDNs or conventional control loops
Flexible but slow

Built-in data plane primitives
Fast but restrictive

Programmable switches?
Constraints on operations in actions, number of stages, SRAM
accesses, egress/ingress communication, in-band match-action
updates…

75

Today’s primitives for reaction

SDNs or conventional control loops
Flexible but slow

Built-in data plane primitives
Fast but restrictive

Programmable switches?
Constraints on operations in actions, number of stages, SRAM
accesses, egress/ingress communication, in-band match-action
updates…

76

Today’s primitives for reaction

Can we enable fine-grained reactions with
minimum latency and maximum flexibility?

77

A peek inside a switch chassis…

On-board CPU
ONIE, Debian/ONL, SONiC

• More capable with higher BW switching ASICs
• Physical cores: 2 4 8→ →

• Underlying workloads involve out-of-band,
infrequent executions, e.g., IS-IS, BGP, RSVP,
DHCP, LLDP, SNMP

Not part of the general compute
pool, underutilized!

1. Push the reactions as close to the switch ASIC as possible

2. Co-design the data plane program with local CPUs for fine-grained
malleability and ease of use

Can we enable fine-grained reactions with
minimum latency and maximum flexibility?

78

Approach

Usable, fast, and expressive in-network reactions on today’s RMT switches

10s of us

Arbitrary C code

Simple extension to P4

Generates code for ‘runtime’ reconfigurability/serializability

79

Mantis overview

1 2
4

3

M1 Language
M2 Translation
M3 Isolation
M4 Execution

80

Anatomy of Mantis

1. Malleable entities
• Amenable to fine-grained reconfiguration at runtime

2. Reactions
• Package reaction logic into a C-like function

81

Abstraction

How to make it run time reconfigurable?

table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, 1);
}

foo.p4

82

M1: start with P4 code

table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, 1);
}

foo.p4r

83

M1: P4R example

Declaring malleable entities

Previous P4 code with references
to malleable entities

malleable value prio_var {
 width : 16; init : 1;
}

table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var});
}

foo.p4r

84

M1: P4R example

Reaction with arbitrary C

Specifying reaction arguments

Reconfiguration

malleable value prio_var {
 width : 16; init : 1;
}

table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var});
}

reaction my_reaction(reg re_qdepths[1:10]){
 uint16_t cur_max = 0;
 for (int i = 1; i <= 10; ++i)
 if (re_qdepths[i] > cur_max) {
 cur_max = re_qdepths[i];
 }
 }
 if (cur_max > THRESHOLD) {
 ${prio_var} = 5;
 }
}

foo.p4r

85

M1: P4R example

Declaring malleable entities

Previous P4 code with references
to malleable entities

Reaction with arbitrary C

Declaring malleable entities

Previous P4 code with references
to malleable entities

Specifying reaction arguments

Reconfiguration

malleable value prio_var {
 width : 16; init : 1;
}

table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var});
}

reaction my_reaction(reg re_qdepths[1:10]){
 uint16_t cur_max = 0;
 for (int i = 1; i <= 10; ++i)
 if (re_qdepths[i] > cur_max) {
 cur_max = re_qdepths[i];
 }
 }
 if (cur_max > THRESHOLD) {
 ${prio_var} = 5;
 }
}

foo.p4r

86

M1: P4R example

Malleable entities
• Malleable value
• Malleable field (table match, action…)
• Malleable table
Reaction function arguments
• Register
• Field
• Malleable field

1 2
4

3

M1 Language
M2 Translation
M3 Isolation
M4 Execution

87

Anatomy of Mantis

Preparing registers for a
pull-based model

foo.p4r
malleable value prio_var {
 width : 16; init : 1;
}

table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var});
}

reaction my_reaction(reg re_qdepths[1:10]){
 uint16_t cur_max = 0;
 for (int i = 1; i <= 10; ++i)
 if (re_qdepths[i] > cur_max) {
 cur_max = re_qdepths[i];
 }
 }
 if (cur_max > THRESHOLD) {
 ${prio_var} = 5;
 }
}

88

M2: P4R transformation

malleable value prio_var {
 width : 16; init : 1;
}
table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var});
}

Generalize user-specified knobs for “hitless” reconfiguration

foo.p4r

89

M2: P4R transformation

Replacing the malleable
value

foo.p4r
malleable value prio_var {
 width : 16; init : 1;
}
table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var}p4r_meta_.prio_var);
}
header_type p4r_meta_t_ {
 field {prio_var : 16;}
}
metadata p4r_meta_t_ p4r_meta_;

90

M2: P4R transformation

Multi-purpose initialization table

Replacing the malleable
value

foo.p4r
malleable value prio_var {
 width : 16; init : 1;
}
table my_table {
 reads { ipv4.dst : ternary; }
 actions { my_action; drop; }
}
action my_action() {
 modify_field(priority, ${prio_var}p4r_meta_.prio_var);
}
header_type p4r_meta_t_ {
 field {prio_var : 16;}
}
metadata p4r_meta_t_ p4r_meta_;

table p4r_init_ {
 actions {p4r_init_action_;}
 size : 1;
}
action p4r_init_action_(prio_var) {
 modify_field(p4r_meta_.prio_var, prio_var);
}

91

M2: P4R transformation

1 2
4

3

M1 Language
M2 Translation
M3 Isolation
M4 Execution

92

Anatomy of Mantis

Isolation matters, consider

Mantis enforces per-pipeline, per-reaction serializable isolation

Mantis Agent

src dst

reaction my_reaction(reg src, reg dst){}

t
Measurement

Packet
processing Update

2

p2
• Expectation: src ← p1, dst ← p1

• Without isolation: src ← p1, dst ← p2

1

p1

93

M3: Isolation (ACID)

p4r_meta_.mv=0p4r_meta_.mv=1
idx0

idx1

src register

idx0

idx1

dst register

Storing field arguments values

Checkpoint

Working copy

For a register, at most one element will be updated on a packet thread
Stale values may appear in the current checkpoint for register arguments

Control planeData plane

{()}ri, ti
ti > ti−1

else
Timestamps appended
to the duplicate buffer

ti

94

M3: Isolating measurement

Three-phase updates for isolating fast, repeated, partial updates

Match Action
hdr.a=0, vv=0 my_action(0)
hdr.a=0, vv=1 my_action(0)
hdr.a=1, vv=0 my_action(1)
hdr.a=1, vv=1 my_action(1)

vv=0 (exact match)

From previous mirror phase

vv=0
Match Action

hdr.a=0, vv=0 my_action(0)
hdr.a=0, vv=1 my_action(0)
hdr.a=1, vv=0 my_action(1)
hdr.a=1, vv=1 my_action(2)

Prepare updates in vv=1
copy for malleable entities

vv ⊕ 1
Commit

vv=1
Match Action

hdr.a=0, vv=0 my_action(0)
hdr.a=0, vv=1 my_action(0)
hdr.a=1, vv=0 my_action(2)
hdr.a=1, vv=1 my_action(2)

Mirror the changes to the shadow
copy for amortization

Bounded memory overhead and predictable latency

95

M3: Isolating updates

1 2
4

3

M1 Language
M2 Translation
M3 Isolation
M4 Execution

96

Anatomy of Mantis

Mantis control plane is instead reaction-centric

Traditionally data/control plane interactions are treated as one-off,
isolated events, i.e., assumed to be “on the slow path”

 helper_state = precompute_metadata();
 memo = setup_cache(helper_state);
 run_user_initialization(helper_state, memo);

 while(!stopped) {
 updateTable(memo, "p4r_init_", {measure_ver : mv ^ 1});
 read_measurements(memo, mv); mv ^= 1;
 run_user_reaction(memo, helper_state, vv ^ 1);
 updateTable(memo, "p4r_init_", {config_ver : vv ^ 1});
 fill_shadow_tables(memo, vv); vv ^= 1;
 }

Prologue

Dialogue

~PCIe latency of the underlying system
97

M4: Mantis control plane

Prototype implementation on a Wedge100BF-32X Tofino switch
• P4R frontend: Flex/Bison based, ~5000 lines of C++ and grammar
• Mantis agent: dynamic (re)loading of user reaction (.so object)

98

Implementation and evaluation

Prototype implementation on a Wedge100BF-32X Tofino switch
• P4R frontend: Flex/Bison based, ~5000 lines of C++ and grammar
• Mantis agent: dynamic (re)loading of user reaction (.so object)

Evaluation
• How fast is Mantis’s reaction time?
• What is the overhead?
• What are the applications of Mantis?
• How does Mantis compare to existing alternatives?

99

Implementation and evaluation

Reinforcement
Learning

Flow signature,
packet count

Route RecomputationDoS mitigation Hash polarization
mitigation

Measurement

Control logic

Reconfiguration

Heartbeat counts,
timestamp

Queue depths of ECMP
ports

Packet counts and
queue depths

Block the sender if
the estimated flow
size exceeds a
threshold

Mark the failed link if
received heartbeat
number is small than
expected after
consecutive K
confirmations

Drop the malicious
traffic for the
blocked senders

Reroute traffic towards
the affected link

Change ECMP hashing
input to another
permutation if found a
persistent imbalance of
port utilization

Reconfigure the
malleable fields for
another 5-tuple
permutation

Change ECN
malleable value

Use a Q-learning
algorithm to calculate
the optimal ECN
threshold based on
rewards

100

Use cases

• Evaluation setting
• CAIDA traces, 20s chunk, 10Gbps link of ISP

backbone
• Arguments

• packet source IP and packet counter
• Algorithm

•
Estimation formula

• : timestamp when first observe the flow
• Mantis sampling rate: every 10us, ~1 in 5 packets

̂ft − ̂ft0

t − t0
t0

101

Flow size estimation

a: Reaction argument b: Malleable entity update

End-to-end reaction time: 10s of us

Fb(1 tblMod) + ∑
a∈args

(Fa(a)) + C + ∑
t∈tblMods

(2Fb(t)) + 2Fb(Ninit − 1) + Fb(1 tblMod)

102

Mantis achieves fast reaction times

A dialogue loop occupies up to a single core but can be throttled

Latency penalty
median: ~4.64%
p99: ~6.45%

Overall, Mantis can co-exist with other functionalities
103

Mantis CPU overhead

• Fine-grained reaction to network statistics as first class citizen
• P4R interface to simplify the encoding of serializable reaction
• Generic support of sub-RTT reactive behaviors

Mantis can be used for…
• Encoding flexible control logic
• Workarounds of current limitations
• Reducing memory overhead via offloading
• Data/control plane co-design

https://github.com/eniac/Mantis

104

Summary

105

Outline

Zero-waste
designs

OrbWeaver (NSDI 2022)
Reusing IDLE link cycles for in-

band control communication

Reuse

Recycle

Mantis (SIGCOMM 2020)
Recycling switch resources for

flexible, sub-RTT reactions

Reduce

Beaver (OSDI 2024)
Reducing ‘tax’ of partial snapshots for

distributed cloud services

106

Let’s talk about snapshots
Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

Message
receive

Computation
step

States

States

States

States

107

Let’s talk about snapshots
Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

Message
receive

Computation
step

States

States

States

States

Network telemetry Distributed software
debugging

Deadlock detection Checkpointing and
failure recovery

Snapshots are useful!

……

108

Classic distributed snapshots
e.g., Chandy-Lamport (TOCS 1985)

109

Classic distributed snapshots
e.g., Chandy-Lamport (TOCS 1985)

Guarantee of causal consistency
For any event in the cut, if (Lamport’s ‘happened before’), is in the cut.e e′￼→ e e′￼

Consistent cut

e0

e1

Node 0

Node 1

e4

e5

Initiation
e2

e3

Tagging

Snapshot
triggering

110

Classic snapshots operate in an isolated universe

Fundamental assumption:
The set of participants are closed under causal propagation.

Utopian: isolated ‘universe’ of nodes

Unfortunately, the assumption
mismatches the real-world scenarios!

Consistent cut

Node 0

Node 1

The assumption rarely matches reality!

Modular services
Instrumentation

constraints

Costs and
overheads

Hidden causality
due to human

My service

Utopian: isolated ‘universe’ of nodes

The assumption mismatches the reality!

Modular services
Instrumentation

constraints

Costs and
overheads

Hidden causality
due to human

My service

Utopian: isolated ‘universe’ of nodes

Unrealistic to assume zero external interaction
Impractical to instrument all processes

113

Nodes of interest

Backend 0

Backend 1

Consequences?

An external node
Frontend

e0

e2

e1

Hidden causal relationship: e0 ← e2

No longer consistent!

 in snapshot, yet not in snapshot!e2 e0

A single external node can break the guarantee!

114

Nodes of interest

Backend 0

Backend 1

Consequences?

An external node
Frontend

e0

e2

e1

Hidden causal relationship: e0 ← e2

No longer consistent!

 in snapshot, yet not in snapshot!e2 e0

A single external node can break the guarantee!

Can we capture a causally consistent snapshot when
a subset of the broader system participates?

115

Beaver: practical partial snapshots

In-group nodes
(Nodes with VIPs of interest)

Out-group nodes
(Nodes without control)

Arbitrary interactions

The same causal consistency abstraction
Even when the target service interact with external,
black box services (arbitrary number, scale, placement,
or semantics) via arbitrary pattern (including multi-hop
propagation of causal dependencies)

Zero impact over existing service traffic
That is, absence of blocking or any form of delaying
operations during distributed coordination

116

How is it even possible without coordinating
machines external to those of interest?

Build a dam like a Beaver!

117

In-group

Backend 0

Backend 1

Out-group
Frontend

Idea 1: Gateway (GW) indirection

Beaver’s gateway (GW) indirection:
Gateway

1. Initiate GW to enter snapshot out-of-band
e0

e2

e1

2. Mark inbound packets correspondinglyConsistent!

Before: inconsistent cut at (after)

With GW: consistent cut at (before)

e2

e2

118

Formalizing idea 1: Monolithic Gateway Marking

Formal proof in paper

Holds even if treating the out-group
nodes as black boxes

Sufficient to only observe the
inbound messages

119

Key ideas in Beaver

Idea 1: Indirection through Monolithic Gateway Marking (MGM)

Challenge 2 How to handle asynchronous GWs?

How to ensure consistency without coordinating external machines?

Challenge 1 How to instantiate GW?

How to enforce MGM practically in today’s network?

120

Challenge 1: instantiating GWs

Rerouting all inbound traffic through the GW is costly

Cloud data centers already place layer-4 load balancers (SLBs)

Data center fabric

VIP 1 VIP 2

Inter-VIP

Internet

SLB VIP2SLB VIP1
Repurpose SLBs for in-situ marking

121

Key ideas in Beaver

Idea 1: Indirection through Monolithic Gateway Marking (MGM)

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

Idea 2: Reuse existing SLBs with unique locations

How to ensure consistency without coordinating external machines?

Challenge 1 How to instantiate GW?

How to enforce MGM practically in today’s network?

122

In-group

Backend 0

Backend 1

Out-group
Frontend

Implications of multiple SLBs

GW 0

GW 1
GW 1 hasn’t initiated the new
snapshot mode to mark it,
triggering the violation

e2

Inconsistent!

 in snapshot, yet that leads to it is not, inconsistent!e2 e0

e0

e1

123

Consistency violation

C
on

si
st

en
cy

Cost

Blocking
Correct but costly

Non-blocking

How about blocking messages to ‘atomically’ trigger all SLBs?

Handling multiple GWs: design space

? Can we get both consistency
and zero cost?

Optimistic Gateway Marking (OGM)
Intuition & formalism

Mechanism

124

In-group

Backend 0

Backend 1

Out-group
Frontend

GW 0

GW 1

Reflection: Beyond worst cases, when and how often does the violation occur?

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

Time gap between
SLB initiation points

Challenge 2: handling multiple SLBs

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external
causal chain)

→ → →

125

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

e′￼2

Challenge 2: handling multiple SLBs
Reflection: beyond worst cases, how often does the violation occur?

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external
causal chain)

→ → →

e′￼0

e′￼1

Time gap between
SLB initiation points

Theorem: if < , the partial snapshot is consistent!

Formal proof in paper

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

126

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

e′￼2

Challenge 2: handling multiple SLBs
Reflection: beyond worst cases, how often does the violation occur?

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external
causal chain)

→ → →

e′￼0

e′￼1

Time gap between
SLB initiation points

Theorem: if < , the partial snapshot is consistent!

Formal proof in paper

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

Observation: condition holds in most cases anyway!
 can approximate zero
• SLBs share the same region
• Proper placement of controller

 is relatively high
• trips through the fabric
• Higher when the out-group is in

another DC or Internet

≥ 3

Optimistic Gateway
Marking (OGM)

Optimistic execution in common cases

Verification/rejection of
snapshots under worst cases

127

How does Beaver detect a snapshot violation?

Theorem: if < , the partial snapshot is consistent

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →
 Time gap between initiator-to-SLB one-way delays≡

1. Determine the lower bound of statically

2. Measure a safe upper bound for online using a single clock

False positives is fine as one can always retry!

128

Key ideas in Beaver

Idea 1: Indirection through Monolithic Gateway Marking (MGM)

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?
Idea 3: Optimistic Gateway Marking (OGM)
• Optimistic execution in common cases
• Verification/rejection of snapshot under worst cases

How to ensure consistency without coordinating external machines?

Idea 2: Reuse existing SLBs with unique locations
Challenge 1 How to instantiate GW?

How to enforce MGM practically in today’s network?

129

Key ideas in Beaver
How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking

Challenge 1 How to practically instantiate GW?

Challenge 2 How to handle asynchronous GWs?

Idea 2: Exploit the unique location of existing SLBs

Idea 3: Optimistic Gateway Marking (OGM)
• Optimistic execution in common cases
• Verification/rejection of snapshot under worst cases

More details about Beaver’s protocol…
• Synchronization-free snapshot verification
• Supporting parallel snapshots
• Handling failures
• Handling packet loss, delay, and reordering
• …

130

Implementation and evaluation
SLB-associated workflow

• Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch S4048-ON

• Core SLB functions in DPDK: ~1860 LoC
• Backend server functions in XDP and tc: ~1040 LoC

Topology
• Support typical communication patterns
• Possible out-group locations: within the same DC, DC at a

different region, or on the Internet
• Scale up to 16 SLB servers and 1024 backend applications

Beaver protocol integration
• Minimal logic: (1) 68 LoC for SLB DPDK data path logic (2) 102

LoC for eBPF at in-group VMs

Layer-3 switches
Internet

SLBs Controller Backend servers
(w/ in-group VIP)

Client

Data center A

1

Backend servers

Data center B

2

3

131

Details in the paper…

Beaver supports fast snapshot rates

Beaver incurs zero impact

Region B (out-group)
Post-upload

Post-storage

Notifier

Region A (in-group)
Notifier

Post-storage
Case 1

Replication

Case 2

Pseudo-dependency

Storage A

Storage B

<latexit sha1_base64="ZHlhKowLL3qGcSH28nDbj++WOjE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ie0Q8lkMm1okhmSjFCGfoUbF4q49XPc+Tem01lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbud+94kqzWL5YKYJ9QUeSRYxgo2VHgfcRkM89IbVmlt3c6BV4hWkBgVaw+rXIIxJKqg0hGOt+56bGD/DyjDC6awySDVNMJngEe1bKrGg2s/yhWfozCohimJlnzQoV39PZFhoPRWBTQpsxnrZm4v/ef3URNd+xmSSGirJ4qMo5cjEaH49CpmixPCpJZgoZndFZIwVJsZ2VLEleMsnr5LORd27rDfuG7XmTVFHGU7gFM7Bgytowh20oA0EBDzDK7w5ynlx3p2PRbTkFDPH8AfO5w9pvZAq</latexit>

�1

<latexit sha1_base64="jPK9ZxvhCyGEEsDEshQf5ISOajU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUUl0W3bisYB/SDiWTybShSWZIMkIZ+hVuXCji1s9x59+YtrPQ1gOBwznnkntPkHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2BNOZO0bZjhtJcoikXAaTeY3M797hNVmsXywUwT6gs8kixiBBsrPQ64jYZ4WBuWK27VXQCtEy8nFcjRGpa/BmFMUkGlIRxr3ffcxPgZVoYRTmelQappgskEj2jfUokF1X62WHiGLqwSoihW9kmDFurviQwLracisEmBzVivenPxP6+fmujaz5hMUkMlWX4UpRyZGM2vRyFTlBg+tQQTxeyuiIyxwsTYjkq2BG/15HXSqVW9RrV+X680b/I6inAG53AJHlxBE+6gBW0gIOAZXuHNUc6L8+58LKMFJ585hT9wPn8Aa0GQKw==</latexit>

�2

put(k) get(k) deref(k) deref(k)

In-group

Beaver
partial

snapshot

Inconsistent
traditional
snapshot

Lambda
life time

InvokeBrowser
client

GPU
backend

GPU
backend In-group

Use cases: integration testing, service
analytics, deadlock detection, garbage

collection…

Beaver rejects snapshots infrequently

132

Example: garbage collection for ephemeral storage

Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

133

Example: garbage collection for ephemeral storage

put(k)

+1

Invoke

get(k)

+1

deref(k)

-1

deref(k)

Lambda life time

-1
Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

134

Example: garbage collection for ephemeral storage

put(k)

+1

Invoke

get(k)

+1

deref(k)

-1

deref(k)

Lambda life time

-1
Backend

Backend

In-group

λ1

λ2

put/get/deref
Ephemeral
storage

Strawman
Reference count = 0, unsafe recycle
decision of !k

Reference count = 1, safe decision
recognizing open reference to k

135

Beaver: summary

The first partial snapshot protocol that extends classic distributed
snapshots in practical cloud settings

Guarantees causal consistency while incurring minimal changes and
overheads

Key idea: Exploit data center characteristics (e.g., unique topologies)

136

Vision: toward zero-waste networked systems

Insatiable application demand Increasing energy consumption

Grand challenge: Push the wastes in
computing infrastructure to their limits

Embodied carbon is also a major contributor!

137

Vision: toward zero-waste networked systems

Rethinking classic layering principle for a clean-slate redesign
• How to specialize the stack leveraging the predictability in emerging workloads/primitives?
• Can we simplify and break the current layering architecture while ensuring modularity?
• Beyond cross-layer design, what does that ‘post-layering’ architecture look like?

Restructuring systems stacks for efficient ‘tax’ functions
• Can we enable an asynchronous IDLE channel for executing tax functions?
• How to exploit the growing heterogeneity in hardware accelerators?

Tight coupling IDLE resources, e.g., for performant network control
• Can we repurpose the underutilized resources for integrating network tasks?
• Or, how to reduce the wasted consumption to its limits (e.g., power)?

