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Network systems, a packet forwarding engine
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Network systems, a packet forwarding engine
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Today, networks are far more complex!



Network systems: an operator’'s view
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Networks serve to forward user data

Today, networks are far more complex!
...must handle out-of-control events!



Network systems: an operator’s view
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Networks serve to forward user data

Today, networks are far more complex!
...a vast array of control tasks
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Today, network systems are
more than just about data forwarding!




rend toward terabit speed...
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rend toward terabit speed...
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100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

Great for application data transfer @
... problematic for other tasks! ()
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Network control function as an example

Weights, tunnels, rate
limits, ACLs...
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Network control function as an example
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Control, fast and slow
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Control, fast and slow
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If the control interval remains coarse-grained...

@ Hard to react to microscopic events
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Control, fast and slow

:

If were to catch up with the link speeds...

Measure

Analyze
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Control, fast and slow

:

If were to catch up with the link speeds...

Allocate more cables, CPUs...?

Measure

Analyze
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Control, fast and slow

!

Measure Analyze

If were to catch up with the link speeds...
Allocate more cables, CPUs...?
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Control, fast and slow

Costs




Control, fast and slow
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@ Can we break this tension?



Observation: in-network waste




Observation: in-network waste

Widespread
underutilization!
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Observation: in-network waste

Widespread
underutilization!

F: §

Application
anspor Vertical stacks
Newerk = (HW, transport...)
ata link

Location (edge, core...)

ot Why not harness them to
Q support background functions?
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his talk: a zero-waste design approach

High-efficiency designs Zero-waste designs

o’y
z e

Input: the workload and the network

Input: user workload

Goal: output a network that optimizes end- Goal: maximize the utility of that network,

to-end performance metrics with minimal  such as through uncovering the potential
resource usage of the widespread in-network waste
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his talk: takeaway

In-network waste is widespread, and
in numerous forms

By exploiting domain-specific
@ underutilization, it is possible to integrate
performant functions with near-zero costs

Ethernet link IDLE cycles Bl 11

Switch CPUs

Wasted power

Memory

Spare PCle payload
Middleboxes

Performance

&

This talk
@+,

T

Cost
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Research overview

Rethink the co-design of applications, software, and hardware to
minimize waste in networked systems

Application & ’

A management Beaver PrintQueue
[OSDI 2024]  [SIGCOMM 2022]

DY) o

Control plane S ¢
Mantis Cebinae
[SIGCOMM 2020] [SIGCOMM 2022]

v Data plane @

“‘ OrbWeaver Cowbird InvisiFlow
’ [NSDI 2022] [SIGCOMM 2023]  [NSDI 2025]
aw

28



Instantiations of zero-waste designs

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

Mantis (SIGCOMM 2020)
{"ﬁ Recycling switch resources for
e flexible, sub-RTT reactions distributed cloud services

Recycle Reduce

O W Beaver (OSD/ 2024)
Sl(; ‘I i Reducing ‘tax’ of partial snapshots for
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Outline

. Reusing IDLE link cycles for in-
' ‘%’ " band control communication

P VO N

Mantis (SIGCOMM 2020)
Recycling switch resources for
e

flexible, sub-RTT reactions

Recycle

i A\, OrbWeaver (NSD/ 2022) §

Beaver (OSD/ 2024)

Reducing ‘tax’ of partial snapshots for
distributed cloud services

Reduce
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Networks are woven from packets

* A primary goal of computer networks: delivery packets



Networks are woven from packets

* A primary goal of computer networks: delivery packets
. video streaming, web browsing, file transfer...



Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...
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Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...

« Often, two classes of traffic multiplex the same network

34



When introducing a distributed coordination function---

578
@* To cost extra bandwidth for efficacy, or not”

Time synchronization
Failure detector
Congestion notification

In-band telemetry
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When introducing a distributed coordination function---
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Time synchronization clock-sync rate <> clock precision
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Congestion notification
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When introducing a distributed coordination function---

[63@
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Time synchronization clock-sync rate <> clock precision

Failure detector keep alive message frequency < detection speed
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In-band telemetry INT postcard volume < post-mortem analysis
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When introducing a distributed coordination function---

[éf»?é
v To cost extra bandwidth for efficacy, or not?
Time synchronization clock-sync rate <> clock precision

Failure detector keep alive message frequency < detection speed

Congestion notification probe data/rate < measurement accuracy
In-band telemetry INT postcard volume < post-mortem analysis

s this trade-off between overhead and fidelity necessary?

38



Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?



Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

', Ildea: Weaved Stream

-Q- . Exploit every gap (O(100ns)) between user packets opportunistically
* Inject customizable IDLE packets carrying information across devices

40



Opportunity: < us gaps are prevalent

1001\

on 'o°) Inter-packet gaps ﬁ

Root causes?

» Uncertainties in application load patterns (e.g., burstiness)
« Conservative resource provisioning for peak usages
Bottlenecks at CPU processing vs network BW

TCP effects

Structural asymmetry

41



Abstraction: weaved stream @(

Union of user AND IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets < 7

T = Bioocrps!MTU 5008 = 12005

[R2 Little-to-zero overhead] Not impact user packets or power draw

42



Implement many in-network applications
(failure detection, clock sync, congestion notification...)

for free!



Crazy idea?

Extending IDLE characters to higher layers

e Data plane packet generator

e Replication engine

e Data plane programmability

e Fexible switch configuration (priorities, buffers...)



OrbWeaver: outline

1. Switch data plane architecture
2. Implementing weaved stream abstraction

3. OrbWeaver applications
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Strawman: blind packet generation

Rx MAC Tx MAC 4

| Parser Queueing &

!E Egress Dvdiren '

Packet

IR
= l B
o = io= . g PN I N D P 2
Plpeline >
I I '
L Y.
TN
- = = - Y - - ) o e = = - e B a = = - L}
S ey e A L U e N e A e g A -
2 o a . ’ 3
¢

BU
"" . P
i

49 ‘
. 1) ‘

N/7 rate

Packet
Generator

Ll Parser )

Parser




Strawman: blind packet generation
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Predictability even there is no user traffic @
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Problems with blind packet generation

Rx MAC Tx MAC 4
| Parser Queueing & NortS
Q e
, | Packet | |
N/t rate +| Parser || ©.
Packet | Parser \
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports
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Problems with blind packet generation

Rx MAC

- Parser

N/t rate I [Py - -
Packet P Parser
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!

50



Problem #1: scalability

Solution: seed stream amplification

Rx MAC Tx MAC 4

| Parser \ _ N ports

Ll Parser i

2
o
—
)
=

Parser /

1/7 seed rate

Packet
Generator




Problem #2: cross-traffic contention at PRE

Rx MAC Tx MAC 4

| Parser \
5
Q

Ll Parser i

Parser /

Monopolize usage and waste PRE packet-level BW!

1/7 seed rate

Packet
Generator
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Problem #2: cross-traffic contention at PRE

Solution: amplify seed stream on-demand

Rx MAC Tx MAC 4
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2/7 seed rate

Packet
Generator

Parser

Selective filtering
* Per-egress port bitmap indicating
packet presence in the last 7/2 cycle
* |f not, replicate an IDLE to the port
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Problem: other contention points

2/7 seed rate

Packet
Generator

Parser

User packets may
starve SEED packets

Queueing &
Acheduling
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Problem: other contention points

2/7 seed rate

Packet

Rx MAC Tx MAC 4

Parser
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Generator

>

Parser

IDLE packets may
impact user packets
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Problem: other contention points

Solution: leverage rich configuration options for priorities and buffer management

Rx MAC Tx MAC 4

Queueing & N ports

Acheduling

- Parser

2/7 seed rate | parseriirBummsimmbsnmsmmm e S = WWS.WM Lo

\vg

Packet

P Parser
Generator

User > SEED

SEED > User

» Zero impact of weaved stream predictability
« Zero impact of user traffic throughput or buffer usage
« Negligible impact of latency of user packets
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Implementation and evaluation
Hardware prototype on a pair of Wedge 100BF-32X Tofino switches
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Takeaway: Little-to-no impact of power draw, latency, or throughput

while guaranteeing predictability of the weaved stream!
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OrbWeaver use cases

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries
network control

Packet forensics Clock synchronization
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OrbWeaver use cases

Fine-grained network
state inference [R1]
Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries
network control

Packet forensics Clock synchronization
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OrbWeaver use cases

S—2 Free information Dﬂ Fine-grained network
— isseminaton [R2] state inference [R1]

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry

Event-based Self-healing failure detection Network queries
network control

Packet forensics Clock synchronization
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OrbWeaver use cases

S—2 Free information Dﬂ Fine-grained network
— isseminaton [R2] state inference [R1]

Performance aware routing Flowlet load imbalance
Consistent replicas Network queries Latency
localization
Header compression Microburst detection In-band telemetry
Y Self-healing failure detection Network queries
network control
Packet forensics Clock synchronization
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Failure detection with OrbWeaver @

Before: Weak guarantee of the messaging channel

After: OrbWeaver's weaved stream abstraction guarantees maximum

inter-packet gap (120ns for 100 GbE)

.................. L - 0.8 1 Original
- — 5 Original © Dropped x Reroute = 8 =1 OrbWeaver
1 2 J: BFD 107 ® foooooooootoxxeames K22 06 | BFD
i | 245 =5 <los o ©
i g = g g 0.4 -
=E- 8 3| S
S T s
9 " £ 02 -
205 = 1 8
: - R I E B e
O L | | |
10G  25G 100G . 100MB  1GB
Time [«s]
Emulated failures with optical attenuators tested Combining it with data-plane reroute

under varying link speeds

Push the detection speed to its limits toward
instantaneous, self-healing failure mitigation

Near-zero
impact!




Example: time synchronization

Node A Node B

Transmit t, @)

*‘@ Cache ty, &,

_{& Transmit
t1, t2’ t3

(t2+t3)—(t7+t4)®‘
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Example: time synchronization

Node A

Transmit t, @)

(t2+t3)—(t7+t4)®‘

2

-

Node B

*‘@ Cache ty, &,

_{& Transmit
t1, t2’ t3

Existing approaches for high precision
e Require special hardware (such as DTP)

e Require messaging overheads (such as DPTP)



Example: time synchronization

Node A Node B Existing approaches for high precision
Transmit t, @ e Require special hardware (such as DTP)

\*@ Cachet,, t, * Require messaging overheads (such as DPTP)

_{& Transmit

- Pt Challenges to achieve ns precision
P2 "3

(t2+t3)—(t7+t4)®‘

e Messaging frequency v.s. clock precision
2

e |naccuracies due to queueing delays



Rx MAC

Queueing &
Scheduling

-1 Parser

Ingress Packet Egress
Pipeline > Buffer > PRE Pipeline

1 Parser

Data plane timestamps don't capture
the actual point of serialization



OrbWeaver redesign @

Key ideas:
1. Embed timestamp information in free IDLE packets [R2]

68



OrbWeaver redesign @

Key ideas:

1. Embed timestamp information in free IDLE packets [R2]

2. Selective synchronization: infer queue delay from IDLE gaps and
filter out unreliable messages [R1]



OrbWeaver redesign @

Key ideas:

1. Embed timestamp information in free IDLE packets [R2]

2. Selective synchronization: infer queue delay from IDLE gaps and
filter out unreliable messages [R1

1.0 1 Jo
0.8 r
L - :
a 0.6
O04 ¢ Medium
Heavy O
0.2 b Medium (selective) o
Heavy (selective) = = = a 10 -
0.0 e .
1 10 100 10

Offset [ns]

Achieve same or better performance with close-to-zero overheads
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OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
» Push the utilization of IDLE cycles to its limits
« Guarantee predictability with little-to-zero overhead
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OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
» Push the utilization of IDLE cycles to its limits
« Guarantee predictability with little-to-zero overhead

« (Generic support of a wide range of data plane applications for free
« Don't need to choose between coordination fidelity and bandwidth overhead
- Broader implications: rethink the design of distributed coordination protocols



Outline

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

(= Wiantis (Siccomm 2020 2O~ W
{”ﬁ Recycling switch resources for § SI
&=  flexible, sub-RTT reactions |

Beaver (OSD/ 2024)

Reducing ‘tax’ of partial snapshots for
distributed cloud services

Reduce
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oday’s networks react

« A common task: reacting to current network conditions
» Detecting failures and then rerouting
* |[dentifying malicious flows and then filtering
* Recognizing load imbalance and then adjusting

* In data centers, reactions need be fast

74



oday’s primitives for reaction

SDNs or conventional control loops
Flexible but slow

Built-in data plane primitives
Fast but restrictive

Programmable switches?

Constraints on operations in actions, number of stages, SRAM
accesses, egress/ingress communication, in-band match-action
updates...

75



Can we enable fine-grained reactions with
minimum latency and maximum flexibility”



A peek inside a switch chassis:

On-board CPU « More capable with higher BW switching ASICs
ONIE, Debian/ONL, SONIC

Sl

- Physical cores: 2—4—8

L g R - Underlying workloads involve out-of-band,
infrequent executions, e.g., IS-IS, BGP, RSVF,
DHCP, LLDP, SNMP

Not part of the general compute
pool, underutilized'

77



Approach

Can we enable fine-grained reactions with
minimum latency and maximum flexibility”

1. Push the reactions as close to the switch ASIC as possible

2. Co-design the data plane program with local CPUs for fine-grained
malleability and ease of use



Mantis overview

Usable, fast, and expressive in-network reactions on todays RMT switches

Simple extension to P4

Switch

(

.par

Mantis

Control Plane 1%

Geactions

‘[Compiler

Malleable
P4 Program

J

-

Arbitrary C code

10s of us

J

Generates code for ‘runtime’ reconfigurability/serializability
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Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M2 Translation
M3 |solation

M4 Execution
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Abstraction

1. Malleable entities
« Amenable to fine-grained reconfiguration at runtime

2. Reactions
« Package reaction logic into a C-like function

81



M1 : start with P4 code
foo.p4

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }
}
action my action() {
modify field(priority, 1)

| ; How to make it run time reconfigurable?



M1 : P4R example

foo.p4r

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }
}
action my action() {
modify field(priority, 1);
}

83



M1 : P4R example

foo.p4r

malleable value prio_var ({
width : 16; init : 1;
}

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }

}

action my action() {

modify field(priority, ${prio var});

}

Declaring malleable entities

Previous P4 code with references
to malleable entities

84



M1 : P4R example

foo.p4r

malleable value prio_var ({
width : 16; init : 1;

}

table my table {
reads { ipv4d.dst : ternary; }
actions { my action; drop; }

}

action my action() {

}

reaction my reaction|(reg re qgdepths[1:10]) {

}

modify field(priority, ${prio var});

uintlé t cur max = 0;
for (int 1 = 1; i <= 10; ++i)

}

if (re_qgdepths[i] > cur max) {
cur max = re qdepths[i];

}

if (cur_max > THRESHOLD) ({

}

${prio_var} = 5;

Declaring malleable entities

Previous P4 code with references
to malleable entities

Specifying reaction arguments

Reaction with arbitrary C

Reconfiguration

85



Malleable entities

+ Malleable value

- Malleable field (table match, action...)
+ Malleable table

Reaction function arguments

* Register

* Field

« Malleable field



Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M?2 Translation
M3 Isolation

M4 Execution
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M2 : P4R transformation

f00.p4r

malleable value prio var {
width : 16; init : 1;
}

table my table {
reads { 1ipvé4.dst : ternary; }
actions { my action; drop; }

}

action my action() {
modify field(priority, ${prio var});

}

reaction my reaction(reg re gdepths[1:10]) {
uintlée t cur max = 0;
for (int 1 = 1; 1 <= 10; ++1)
1f (re gdepths[i] > cur max) {
cur max = re gdepths[i];
1

}
if (cur max > THRESHOLD) {

${prio var} = 5;
}
}

Preparing registers for a
pull-based model
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M2 : P4R transformation

f00.p4r

malleable value prio var {
width : 16; init : 1;
}

table my table {
reads { ipvé4.dst : ternary; }

actions { my action; drop; }
}
action my action() {
modify field(priority, ${prio var});

}

Generalize user-specified knobs for “hitless” reconfiguration



M2 : P4R transformation

-|'|'| '
Tae—p

2
12 = -

i iyl i " I
Tt & = T
P A
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RPN
=
. 1 .

L7

37
\4

a

1N
oy

1
table my table {
reads { ipvé4.dst : ternary; }
actions { my action; drop; }
}
action my action() {
modify field(priority, $tprie—vaxr}pdr meta .prio var);
}
header type p4r meta t {
field {prio var : 16;} .
} Replacing the malleable

metadata p4r meta t 4r meta ;
PREmeRA_t_ pRrmeRe value



M2 : P4R transformation

TY\"\-I -I ’\1(\1 TT"\-|1'| 1 o i iyl i " I
) 4 § @ R E— - L& BN N g VAL = = w § L./J__LU_V L@ g =y L
w1 A+ 1& 1+ . 1.
VA ™ "I\ Sy usp s § LIy [ S R R L7
1
table my table {
reads { ipvé4.dst : ternary; }

actions { my action; drop; }
}
action my action() {
modify field(priority, $+p£}e:va£+p4r_meta_.prio_var);
}
header type p4r meta t {
field {prio var : 16;}

} Replacing the malleable

metadata p4r meta t pdr meta ;

value
table p4r init {
actions {p4r init action ;}
size : 1;
) 5 T :
¥l 30 e e, (e el ¢ Multi-purpose initialization table

modify field(p4r meta .prio var, prio_var);

}



Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M?2 Translation
M3 Isolation

M4 Execution
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M3 : Isolation (ACID)

|Isolation matters, consider |
Mantis Agent

reaction my reaction(reg src, reg dst) {}

. Expectation: src < pq, dst « P1

. Without isolation: s¥¢c < p;, dst < p,

Mantis enforces per-pipeline, per-reaction serializable isolation

S0-080-eNen»
. Measurement E%c:keest,sing . Update
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M3 Isolating measurement

src register dst register

NI e, i i Working copy

=

Storing field arguments values

For a register, at most one element will be updated on a packet thread
Stale values may appear in the current checkpoint for register arguments

- L > 1 @

Timestamps [; appended (F;y 1)) sessmngendii

to the duplicate buffer ' ¥ else X
Data plane : Control plane
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M3 Isolating updates

Three-phase updates for isolating fast, repeated, partial updates

vv=0 (exact match) vw=0 vw=1

“Waich —action [N Maich __Action _ "Match —ction

hdr.a=0, vw=0 my_action(0 hdr.a=0, vw=0 my_action(0 hdra=0, vw=0 my_action(O
hdr.a=0, vwv=1 my_action(0 B hdra=0, vw=1 my_action(O ':""», hdr.a=0, vw=1 my_action(0
hdra=1, vw=0 my_action(1 hdra=1, vww=0 my_action(1 (2

( ( (

¥ hdra=1,w=0 my_ action

) ) )
) ) )
) ) v D )

hdra=1, vw=1 my_action(1 hdra=1, vw=1 my_action(2 _ hdra=1,vw=1 my_action(2
Commit
From previous mirror phase Prepare updates in vv=1 Mirror the changes to the shadow
copy for malleable entities copy for amortization

Bounded memory overhead and predictable latency
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Anatomy of Mantis

Mantis
Control Plane

Compiler éeactions

Malleable
P4 Program

M1 Language

M?2 Translation
M3 Isolation

M4 Execution
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M4 : Mantis control plane

Traditionally data/control plane interactions are treated as one-off,

Isolated events, I.e., assumed to be “on the slow path”

Mantis control plane is instead reaction-centric

helper state = precompute metadata();
memo = setup cache (helper state);
run_user 1initialization (helper state, memo) ;

while (!stopped) {
updateTable (memo, "p4r init ", {measure ver : mv ~ 1});
read measurements (memo, mv); mv “= 1;
run_user reaction (memo, helper state, vv © 1);
updateTable (memo, "pd4r init ", {config ver : vv ~ 1});
fill shadow tables (memo, vv); vv %= 1;

~PCle latency of the underlying system

Prologue

Dialogue



Implementation and evaluation

Prototype implementation on a Wedge100BF-32X Tofino switch
* P4R frontend: Flex/Bison based, ~5000 lines of C++ and grammar
« Mantis agent: dynamic (re)loading of user reaction (.so object)
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Implementation and evaluation

Prototype implementation on a Wedge100BF-32X Tofino switch
* P4R frontend: Flex/Bison based, ~5000 lines of C++ and grammar
« Mantis agent: dynamic (re)loading of user reaction (.so object)

Evaluation

« How fast is Mantis’s reaction time?

« What is the overhead?

« What are the applications of Mantis?

« How does Mantis compare to existing alternatives?
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Use cases

Hash polarization Reinforcement

DoS mitigation  Route Recomputat/onm/.ﬁga Hon Learning

Packet counts and
queue depths

a Flow signature,
—— Measurement packet count

———

Heartbeat counts,
§ timestamp

£ Queue depths of ECMP §
§ ports 4

Use a Q-learning
algorithm to calculate
the optimal ECN
threshold based on
rewards

, Block the sender if
O Control logic the estimated flow
Wy} Size exceeds a
threshold

number is small than t
§ expected after  persistent imbalance of §

 port utilization

Change ECN
malleable value

@ Reconfiguration Drop the malicious
traffic for the

blocked senders ,
i permutation
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Flow size estimation

 Evaluation setting
» CAIDA traces, 20s chunk, 10Gbps link of ISP

backbone '03 250 ' Data Plane Hash Table [8192]
« Arguments = o 200 F - \ 2\ Data Pgme Hﬁlﬂsh gible 41[2:1383%
. o B = 2 S - ount-Min Sketc
placket source |IP and packet counter = A - =% <~ Count-Min Sketch [16384] - —
* Algorithm c M 150 | ~ o sFlow [1:30k] - -
s s o'm \ ~ Mantis
. . ft _fto -'(_U' ; 100 | N > ~
. Estimation formula ——— EL8 \ N ~
. L=l 85 50| - .o
. 1y: timestamp when first observe the flow o2 \\\ - . /
« Mantis sampling rate: every 10us, ~1 in 5 packets < 0 e —
10 100 1000 10000 100000

Actual flow size [packets]
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Mantis achieves fast reaction times

100 r
80
60
40
20
o
4 8 12162024 28 32

Total state [B]
a: Reaction argument

Field —&3—
- Register —o0—

Latency [us]

Latency [us]

Fi(1 tbiMod) + ) <Fa(a)>+C+ >

acargs retbIMods

100 Table —3—
80 |Value/Field

60

40

20

of 000

1 3 &5 7 9 11

Number of accesses
b: Malleable entity update

<2Fb(l)) + 2F(Njpjt — 1) + Fp(1 tbiMod)

End-to-end reaction time: 10s of us
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Mantis CPU overhead

A dialogue loop occupies up to a single core but can be throttled

— 1, ~
n 60 t
= 50 | X 0.8 |fJ
GE) 40 | WL 06 Li Latency penalty
= 30| T a median: ~4.64%
S T O 04 i 099: ~6.45%
= 20 _ 02 Li w/ Mantis
s 10 - -« '] w/o Mantis = -
&J 0 % @ O ] | | | | |

0O 20 40 60 80 100 200 250 300 350 400 450

Utilization [%] Latency [us]

Overall, Mantis can co-exist with other functionalities
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Summary

+ Fine-grained reaction to network statistics as first class citizen

* P4R interface to simplify the encoding of serializable
» Generic support of sub-RTT reactive behaviors

Mantis can be used for...

« Encoding flexible control logic

« Workarounds of current limitations pdr
« Reducing memory overhead via offloading

- Data/control plane co-design

O https://github.com/eniac/Mantis

reaction

Switch

Mantis
Control Plane

Reactions

7 ¥

Malleable
P4 Program

)

J
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Outline

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

4
.

8

Beaver (OSDI/ 2024)
Reducing ‘tax’ of partial snapshots for
distributed cloud services {

Mantis (SIGCOMM 2020)
Recycling switch resources for
e

flexible, sub-RTT reactions

Recycle ~ Reduce §
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| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

—>
Message(-

]
receive States
. m

EE
EE

Computat:o
step

H
States
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| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message

Computat:o
step

Snapshots are useful!

G

Network telemetry Distributed software Deadlock detection Checkpointing and
debugging failure recovery
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Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)
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Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)

In|t|at|on
€s

m Taadin
Node O ! \gg g

‘ Snapshot

Node 1 Consistent cut triggering

Guarantee of causal consistency @

For any event e in the cut, ife’ — e (Lamport’s ‘happened before’), e’ is in the cut.
y
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Classic snapshots operate in an isolated universe

7T

b” \

Node 1 Consistent cut

Utopian: isolated ‘universe’ of nodes

Fundamental assumption:
The set of participants are closed under causal propagation.

@ Unfortunately, the assumption
mismatches the real-world scenarios!
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he assumption rarely matches reality!

6%

Modul _ Instrumentation
. oduiar services -
constraints
o] My service
Utopian: isolated ‘universe’ of nodes ] E O
$ \all
—
Costs and Hidden causality

overheads due to human



he assumption mismatches the reality!

@ Unrealistic to assume zero external interaction
Impractical to instrument all processes



Consequences?

Frontend
‘ An external node
Hidden causal relationship. ey < €,
:
®
o f
Backend O A

e, In snapshot, yet ey not in snapshot!
o ta ] [
2 Q

Backend 1 No longer consistent!

Nodes of interest

@ A single external node can break the guarantee!
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Can we capture a causally consistent snapshot when
a subset of the broader system participates”



Beaver: practical partial snapshots

Out-group nodes
(Nodes without control)

@ The same causal consistency abstraction

'i@ Even when the target service interact with external,
— black box services (arbitrary number, scale, placement,

or semantics) via arbitrary pattern (including multi-hop

Arbitrary interactions propagation of causal dependencies)

B %. ® @ Zero impact over existing service traffic

That is, absence of blocking or any form of delaying
operations during distributed coordination
In-group nodes
(Nodes with VIPs of interest)
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How Is it even possible without coordinating
machines external to those of interest?

— — ———— ~—~—

'Q' Build a dam like a Beaver! ‘

4
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ldea 1: Gateway (GW) indirection

e Out-group

’ Beaver’s gateway (GW) indirection:

1. Initiate GW to enter snapshot out-of-band
. 2. Mark inbound packets correspondingly

In-group

Frontend

Gateway

m
Backend O

S
Backend 1 \\So

Before: inconsistent cut at O (after e,)

With GW: consistent cut at O (before e,)
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Formalizing idea 1: Monolithic Gateway Marking

Theorem 1. With MGM, a partial snapshot Cpgy for PnC P
is causally consistent, that is, Ve € Cpap, if e.peP"Ae —e,
then €' € Cpar.

Proof. Lete.p = pf” ande'.p= pi-”. There are 3 cases:
1. Both events occur in the same process, i.e., i = j.
2. i # j and the causality relationship ¢’ — e is imposed

purely by in-group messages. H | d . f . h
3. Otherwise, the causality relationship ¢ — e involves at O S eve n | t re at | n g t e O U t_ g ro U p
least one p € P,

In cases (1) and (2), the theorem is trivially true using n Od eS aS b | aC k boxes

identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e € Cparr) A (Fe’ — €) but (¢ ¢ Cpapr). With (3),
¢’ — e means that there must exist some e (at an out-group
process) satisfying ¢’ — e® — e. Now, because €’ ¢ Cparr,

we know e;f,._,, — €' or e;{._,, = ¢, that is, pg."’s local snapshot SUffICIGﬂt tO only Observe the

J J
happened before or during ¢’. Combined with the fact that the
gateway is the original initiator of the snapshot protocol, we '
Know that 8 ¢/ > e . Inbound messages
We can focus on a subset of the above causality chain:
e; — e. From the properties of the in-group snapshot proto-
col, e — e implies that e ¢ Cpap:.
This contradicts our original assumption that e € Cpgr,! [

Formal proof in paper
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Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?

Challenge 2 How to handle asynchronous GWs?
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Challenge 1: instantiating GWs

@ Rerouting all inbound traffic through the GW is costly
Q Cloud data centers already place layer-4 load balancers (SLBs)

Internet

Data center fabric

Repurpose SLBs for in-situ marking
SLBVIP1 | I\, °SLBV|P2 @
. . Inter-VIP

Wy lnfiey e i %%

VIR 1 VIP 2
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Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?
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Implications of muiltiple SLBs

Out-group
Frontend 1 J

GW 1 hasn't initiated the new
snapshot mode to mark it,
triggering the violation

\ f

B /

]
Backend 1 ‘&o

e, in snapshot, yet ¢, that leads to it is not, inconsistent!

Backend O

&
Inconsistent™

o o o
==
[—]|[=]

[—=l|l=]|l=]

In-group
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Handling multiple GWs: design space

How about blocking messages to ‘atomically’ trigger all SLBs?

& > .
) ‘ Can we get both consistency

~" Blocking and zero cost?
Correct but costly

Consistency

- Non-blocking -@- Optimistic Gateway Marking (OGM
y g
Consistency violation { Intuition & formalism

>

Cost ,
Mechanism
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Challenge 2: handling multiple SLBs

Reflection: Beyond worst cases, when and how often does the violation occur?

Frontend

Time gap between
SLB initiation points

Out-group

In-group

Observation:

Causally relevant messages are rare!
GW—in-group—out-group—GW (external
causal chain)

Intuition: the resulting snapshot is consistent
1. if «% is large enough
2. or if % is ‘close’ enough
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Theorem: if «» < «», the partial snapshot is consistent!

“—r =
+“—r =

Time gap between initiator-to-SLB one-way delays
Time to form an external causal chain (GW— in-group— out-group— GW)

Theorem 2. In a system with multiple asynchronous gateways,
let the wall-clock time of the first and last gateway snapshots
be e, = mings(eg'.t) and eg,,, = maxes(eg'.t), respec-
tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
8,8 €G, peP" and g € P*. If €5,,1 — Emnint < Tmins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (€ € Cparr) A (e’ — €) but (€' & Cparr). As before,
there must be some chain ¢’ — e® — e — e. Because ¢’ ¢
Cpart, We have e;;,, —é or e;j,, =¢/, that is, pj." must have

been triggered dirjectly or indjlfectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as . By the definition of T,;,, we have e8.f — e t>
Tmin > Cax-t — €gmin-1. Thus, at event ef, the gateway must
have already initiated the snapshot and will mark e8.m before
forwarding. This results in e ¢ C, "part> & contradiction! O

Formal proof in paper



Theorem: if «» < «», the partial snapshot is consistent!

<
-

Theorem 2. In a system with multiple asynchronous gateways,

Time gap between initiator-to-SLB one-way delays
B B . let the wall-clock time of the first and last gateway snapshots
Time to form an external causal chain (GW— in-group— out-group— GW) be €y = mins (65 and S~ man (€5, respec

tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
88 €G, pEP", and g€ P. If epy ot — €35t < Tonins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
ttlgSmJlart 0 The remlth earethre wth(3)

Observation: condition holds in most cases anyway! m e A

ere must be some ham — e —>eg—) B e¢
Cpart, we hav e‘ﬂ,,—) p,-_ /, that is, pmuth

<% can approximate zero < /S relatively high “““ ;;;;nﬁiu;j

h a]:edymlt tzdth phtandwllma:k mbf
forwarding. This r¢ ultm & Cpart, a contradictiol D

« SLBs share the same region Formal proof in paper

> 3 trips through the fabric

* Proper placement of controller * Higher when the out-group is in
another DC or Internet

Optimistic execution in common cases

Optimistic Gateway /
Marking (OGM) \

Verification/rejection of
snapshots under worst cases



How does Beaver detect a snapshot violation?

Theorem: if «» < «», the partial snapshot is consistent

4¥» = Time gap between initiator-to-SLB one-way delays
4+ = [ime to form an external causal chain (GW— in-group— out-group— GW)

_‘Q’_ 1. Determine the lower bound of «+ statically

2. Measure a safe upper bound for <+ online using a single clock

@ False positives is fine as one can always retry!
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Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

Idea 3: Optimistic Gateway Marking (OGM)
» Optimistic execution in common cases
» Verification/rejection of snapshot under worst cases
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More details about Beaver’s protocol...
* Synchronization-free snapshot veritication

» Supporting parallel snapshots

- Handling failures

- Handling packet loss, delay, and reordering



Implementation and evaluation

SLB-associated workflow

« Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch 54048-ON

e Core SLB functions in DPDK: ~1860 LoC

- Backend server functions in XDP and tc: ~1040 LoC O
="

Data center A

= . Layerswitches
Beaver protocol integration ,\
« Minimal logic: (1? 68 LoC for SLB DPDK data path logic (2) 102 eDarB /|\ % a
LoC for eBPF at in-group VMs So = =0
Topology

SLBs Controller Backend servers
Backend servers

(w/ in-group VIP)
« Support typical communication patterns

« Possible out-group locations: within the same DC, DC at a
different region, or on the Internet

« Scale up to 16 SLB servers and 1024 backend applications
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Detalls in the paper---
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Beaver supports fast snapshot rates J
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Browser
client

GPU
backend
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Use cases: integration testing, service

Region B (out-group)

........

Replication

In-group %

........

|

analytics, deadlock detection, garbage
collection...

V.
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Example: garbage collection for ephemeral storage

Backend

S

Backend

put/get/deref
—  Bg

Ephemeral

storage

In-group
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Example: garbage collection for ephemeral storage

put/get/deref
> % @ Ephemeral

storage

Lambda life time

llllllllllllllllllllllllllll

e Sy -
S WA W A .

2

+1 -1
Backend In-group
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Example: garbage collection for ephemeral storage

put/get/deref @ remera

@ storage
Lambda life time
)’1 :‘lllIllllllllllllllllll...:- Strawman
Invoke/ ""\"======frummmmnmnnnn 'Y
PR /f\ """ 'f \ Reference count = 0, unsafe recycle

'.\/' ...... \/A\J \ decision of k!

=

_>%

get(k) deref(k) deref(k)

S AR W A 2

17 .
Backend X/x;’ X Reference count = 1, safe decision
S e 81,7 recognizing open reference to k

e’ +1e -1
Backend ’ %o In-group
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Beaver: summary

The first partial snapshot protocol that extends classic distributed
snapshots in practical cloud settings

Guarantees causal consistency while incurring minimal changes and
overheads

Key idea: Exploit data center characteristics (e.g., unique topologies)



Vision: toward zero-waste networked systems

Insatiable application demand Increasing energy consumption

dxxb
@02 Embodied carbon is also a major contributor!

0“ Grand challenge: Push the wastes in
’-’ computing infrastructure to their limits
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Vision: toward zero-waste networked systems

Tight coupling IDLE resources, e.q., for performant network control
9%
’. " « Can we repurpose the underutilized resources for integrating network tasks?

« Or, how to reduce the wasted consumption to its limits (e.q., power)?

- Can we enable an asynchronous IDLE channel for executing tax functions?
« How to exploit the growing heterogeneity in hardware accelerators?

Restructuring systems stacks for efficient ‘tax’ functions
=$

« How to specialize the stack leveraging the predictability in emerging workloads/primitives?
- Can we simplify and break the current layering architecture while ensuring modularity?
- Beyond cross-layer design, what does that ‘post-layering’ architecture look like?

§ Rethinking classic layering principle for a clean-slate redesign
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