Fairtopia: A Democratized Cloud-hosted Financial Exchange Platform

Pushing Fairness To Extreme via Communication and Computation Synchrony

Presenter: Liangcheng (LC) Yu

Mentors: Prateesh Goyal, Ilias Marinos

Date: October 9, 2023

Rising interest in cloud-hosted exchange services

- System scalability and resource elasticity
- Cost reduction and ease of management
- Rise of remote work

<u>。</u>

Fairness, in on-premise infrastructure

Fairness, in the cloud

- Outbound: simultaneous release of market date and and
- Inbound: trade presenting in the order of its arrival

Unfairness!

Fairness, in CloudEx (HotOS '21)

- Idea: clock synchronization + message inhibition

- Perfect clock synchronization is hard
- Latencies are unpredictable and unbounded

Fairness, in DBO (SIGCOMM '23, HotNets '22)

' Idea: logical delivery clock based on response time (RT)

- Relaxation of clock sync. requirement via post-hoc correction
- © Guaranteed fairness (tailored to trigger-point based, high-speed trades)

Fairness, in DBO (SIGCOMM '23, HotNets '22)

Idea: logical delivery clock based on response time (RT)

Can we go beyond the existing paradigm and extend the fairness notion?

Let's reflect on underlying model today...

Image source: https://haydenjames.io/the-two-generals-problem/

Truly simultaneous delivery is *impossible*!

Computation can be **nondeterministic** at $O(\mu s)$ (thermal condition, resource utilization...)

Let's reflect on underlying model today...

Symptoms: trading *arms race* to gain δ advantage and increasing market *consolidation*

Can we **guarantee fairness** via achieving **communication** and **computation synchrony**?

Fairtopia: A Democratized Financial Exchange Platform

- Determinism w.r.t. underlying communication & computation
- Generality to trading patterns
- Democratized competition for special hardware

Fairtopia outline

- Conceptual foundation
- User abstraction
- Demo of the real system

• Implementation and benchmarks

This presentation

Fairtopia outline

- Conceptual foundation
- User abstraction
- Demo of the real system
- Implementation and benchmarks

- Impossible? Imagine in virtual time domain

Virtual time unit \equiv *some equal amount of work*

Quantizing *vt* per *'actual'* amount of work' for computation synchrony

Freezing and **advancing** vt for communication synchrony

Synch How to implement a real system?

Instantiate vt as virtual cycles of a platform-agnostic IR/VM

Account and control the advancement of virtual cycles

- Programming interface
- Runtime execution
 - Virtual cycle tracking

Fairtopia outline

- Conceptual foundation
- User abstraction
- Demo of the real system
- Implementation and benchmarks

User programming abstraction


```
White-list set of
#include <fairtopia user.h>
                                     extensible service APIs
int mu handler(subscribed context t* data) {
    if ((*data) > 100) {
         // Sell
         trade t trade = 1;
         submit trade(&trade);
    } else if ((*data) < 10) {</pre>
                                        Just-in-time trade
         // Buy
                                           submission
         trade t trade = 2;
         submit trade(&trade);
                                Narrow KV store API (e.g., lookup,
    map update(0, &trade);
                                  update) for stateful invocations
    return 0;
```

The interface is expressive enough

- Fibonacci, Bubble Sort...
- SMA Mean Reversion
- EMA Mean Reversion
- Relative Strength Index
- Moving Average Crossover Strategy
- Bollinger Bands Strategy

- Multiple Moving Average Crossover Strategy
- Parabolic SAR
- On Balance Volume (OBV) + EMA
- Stochastic Oscillator
- Basic Market Making
- § ...

GPT-4

Implementation

 $\begin{array}{c} \textbf{eBPF asm} \\ \hline \\ 000000000000000000 & \mbox{$ \mbox{$$ \mbox{$ \mbox{$$ \mbox{$ \mbox{$$ \mbox{$$ \mbox{$ \mbox{$ \mbox{$ \mbox{$ \mbox{$ \mbox{$ \mbo$

Program life time

Runtime execution engine

Virtual cycle tracking instrumentation

Virtual cycle assignment

Implementation

Abstraction: Democratized Financial Exchange Platform

Vi

- Compute hardware
- Trading patterns

9

Runtime execution engine

Virtual cycle assignment

Fairtopia outline

- Conceptual foundation
- User abstraction
- Demo of the real system
- Implementation and benchmarks

Fairtopia runtime execution is also efficient

Summary

- Fairtopia: a democratized financial exchange platform
 - Guaranteed fairness with communication and computation synchrony
 - Support of generic trading patterns
 - No need for special hardware

Opportunities

- Exploiting determinism: replication/cloud scaling, fault tolerance, and straggler mitigation
- Extensive testing: virtual cycle assignment protocol w/ latency spikes and external communication
- Auditing system: prove the history log and dispute the ordering
- Code privacy and security: host runtime into an enclave

