ero-waste Designs for Terabit Network Systems

Liangcheng (LC) Yu
H

Microsoft Research

24

Cuttlefish: a fair, predictable cloud-hosted exchange platform

Liangcheng (LC) Yu, Prateesh Goyal, llias Marinos, and Vincent Liu I @Z P
o | : =
Advances in Financial Technologies (AFT) 2025 Vicrosot recearcn TYWIDIAL. enn

External msg T '
|

Q00Q QL QY

Controller | Controller| Controller
4 4 4

ﬁ OB & CEs@

Cuttlefish platform

» Equal cloud networks
Abstraction € ® Equal execution hardware

...

» Abstracting out variances in cloud infrastructure
» An efficient implementation runnable on commercial cloud

25

ero-waste Designs for Terabit Network Systems

Liangcheng (LC) Yu
H

Microsoft Research

26

Ever-increasing user applications

PO GRS OB 20 S

Online Machine
Conferencing Learning

Latency-critical

Video Streaming Applications

Application

27

Network systems, a packet forwarding engine

' Q ﬁ . a(@ u - 531“‘;: f?i é Application

B Microsoft
Meta (GO gle amazon

101...001

Networks serve to forward user data

28

Network systems, a packet forwarding engine

' 0 * . &(@ u - 5[;.23 Sici @ Application

= Microsoft
Meta (GO g|e ama;on

G
= ﬁ
_ A

Networks serve to forward user data

Network system

Today, networks are far more complex!

29

Network systems: an operator’'s view

- Q * &(S > - 5:::'28 ?ﬁ é Application

thme drift Node / link Congestion
ode/ lin
h fail h DoS attack collapse
ure
. Network system
hTCP incast hNetwork hotspot BandW|_dth
starvation

Networks serve to forward user data

Today, networks are far more complex!
...must handle out-of-control events!

30

Network systems: an operator’s view

'in .a(@ u- 5:"’?; ;i'.ﬂ Application

@ Clock synchronization Failure @ Defense policy
mitigation
airness trol
@ Desynchronization cobtrol con

Networks serve to forward user data

Today, networks are far more complex!
...a vast array of control tasks

31

Net
WO
rk
Syst
ems:
>. an oper
ato ?
rs Vi
view

O
1O @C
00 -
prlme
f:t '.
@

\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

|

Net
mKNkS
se
rve to forward
USerd
ata

Tod
ay,

:newv

ork
s are far mo
rec
om
plex!

..a vas
o t arr.

..la’:netwariy of contr

d more! COmputaZ{)taSKS

n W/emergi
ng H
Wa
caye
rator
S

32

Today, network systems are
more than just about data forwarding!

rend toward terabit speed...

& 1.6 TbE
a.
a8 oand 400GbE @

_ aie 0% 100 GbE

5 0" 40Goe @
- 10 GbE ®

1gbe @

100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

34

rend toward terabit speed...

& 1.6 TbE
a.
a8 oand 400GbE @

_ e % 100 GbE

oD e ®

o <0 ° 40 GbE
- 10 GbE ®

1gbe @

100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

Great for application data transfer @

35

rend toward terabit speed...

& 1.6 TbE
a.
a8 oand 400GbE @

_ e % 100 GbE

oD e ®

o <0 ° 40 GbE
- 10 GbE ®

1gbe @

100 MbE Evolution of Ethernet standards

1995 2000 2005 2010 2015 2020 2025

The speed of networking is outpacing many others

Great for application data transfer @
... problematic for auxiliary tasks! (<)

36

Network control function as an example

Weights, tunnels, rate
limits, ACLs...

React

= = o
< Measure Analyze
. . .~ . - Load, routes, heavy y

hitters, failures. ..

37

Network control function as an example

i -
....... v React
T

!

L Event ™,
t timescale :

..................... Measure

> 1000 X decrease ———*
in duration!

SN

Analyze

38

Control, fast and slow

ninInnmn A C :
~ Control interval (0(100 ms))
LT = m momomomom o

!

. Event |
{ timescale

If the control interval remains coarse-grained...

Measure

Analyze

39

Control, fast and slow

o I
HONDODOMDNNNNNNNN e EtEIVEL (0T
JN0NR0N0N0NR0NRNE ’

HONR0N0N0NR0NRNE
JNONNRRONRNNRNNRNNE

!

¢t timescale ;

M§

Measure

If the control interval remains coarse-grained...

@ Hard to react to microscopic events

Analyze

40

Control, fast and slow

:

If were to catch up with the link speeds...

Measure

Analyze

41

Control, fast and slow

:

If were to catch up with the link speeds...

Allocate more cables, CPUs...?

Measure

Analyze

42

Control, fast and slow

!

- NG - ™ Measure Analyze

If were to catch up with the link speeds...
Allocate more cables, CPUs...?

\u L 22%0)
@ Costs! “ @02

Embodied & : e
operational carbon Power & cooling Impact to existing traffic

Device purchasing

Control, fast and slow

Costs

Control, fast and slow

(=]
() (s
Performance Costs

@ Can we break this tension?

Observation: in-network waste

Observation: in-network waste

Widespread
underutilization!

Appl

ication

Physical

F: §

Vertical stacks
(HW, transport...)

Location (edge, core...) .

47

Observation: in-network waste
&

Application
anspor Vertical stacks
Nework S5+ (HW. transport...)

Widespread s JE2
underutilization! | J.Loation (edge, core. .)
%3}% ; cmcms o
&

ot Why not harness them to
Q support auxiliary functions?

48

(oY
SO ESE N

ion plant
insects, 3D position

Compan
ri

5
=

t, soil,

ligh

sun

s (5 - .ﬁ.«&w%sﬁ 53
s om.,.. 3 ..._. '-.a B .(:\J.mnﬁ.' 0..“..‘-& .‘

Idle resources

A zero-waste design approach

High-efficiency designs Zero-waste designs

99
o ’."

—
Input: user workload Input: the workload and the network
Goal: output a network to optimize Goal: maximize the utility of that network

performances with minimal resource usage

51

his talk: takeaway

In-network waste is widespread, and
in numerous forms

By exploiting domain-specific
@ underutilization, it is possible to integrate
performant functions with near-zero costs

Ethernet link IDLE cycles Bl 11

Switch CPUs

Wasted power

Memory

Spare PCle payload
Middleboxes

Performance

&

This talk
@+,

T

Cost

52

Instantiations of zero-waste designs

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

Mantis (SIGCOMM 2020)
{"ﬁ Recycling switch resources for
e flexible, sub-RTT reactions distributed cloud services

Recycle Reduce

O W Beaver (OSD/ 2024)
Sl(; ‘I i Reducing ‘tax’ of partial snapshots for

53

Outline

. Reusing IDLE link cycles for in-
' ‘%’ " band control communication

P VO N

Mantis (SIGCOMM 2020)
Recycling switch resources for
e

flexible, sub-RTT reactions

Recycle

i A\, OrbWeaver (NSD/ 2022) §

Beaver (OSD/ 2024)

Reducing ‘tax’ of partial snapshots for
distributed cloud services

Reduce

54

Networks are woven from packets

* A primary goal of computer networks: delivery packets

Networks are woven from packets

* A primary goal of computer networks: delivery packets
. video streaming, web browsing, file transfer...

Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...

57

Networks are woven from packets

* A primary goal of computer networks: delivery packets
« User application: video streaming, web browsing, file transfer...

* Non-user application: control messages, probes about network
state, keep alive heartbeats...

« Often, two classes of traffic multiplex the same network

58

When introducing an in-band control function:--

50
@* To cost extra bandwidth for efficacy, or not?

59

When introducing an in-band control function:--

50
4" " To cost extra bandwidth for efficacy, or not?

Time synchronization
Clock-sync rate <
clock precision

o 1111 Failure detection

o :::: Heartbeat frequency <

A— detection speed

Congestion notification

8___ Probe data/rate <

measurement accuracy

In-band telemetry
ﬁﬁﬁﬁﬁ | INT postcard volume <
— post-mortem analysis

60

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

Can we coordinate at high-fidelity with a near-zero
cost (to usable bandwidth, latency...)?

', Ildea: Weaved Stream

-Q- . Exploit every gap (O(100ns)) between user packets opportunistically
* Inject customizable IDLE packets carrying information across devices

Opportunity: < us gaps are prevalent

1001\

on 'o°) Inter-packet gaps ﬁ

Root causes?

» Uncertainties in application load patterns (e.g., burstiness)
« Conservative resource provisioning for peak usages
Bottlenecks at CPU processing vs network BW

TCP effects

Structural asymmetry

63

Abstraction: weaved stream @(

Union of user AND IDLE (injected) packets

[R1 Predictability] Interval between any two consecutive packets < 7

T = Bioocrps!MTU 5008 = 12005

[R2 Little-to-zero overhead] Near-zero impact to user packets or power draw

64

Implement many in-network functions
(failure detection, clock sync, congestion notification...)

for free!

Crazy idea?

Extending IDLE characters to higher layers

e Data plane packet generator

e Replication engine

e Data plane programmability

e Fexible switch configuration (priorities, buffers...)

OrbWeaver: outline

1. RMT switch data plane architecture
2. Implementing weaved stream abstraction

3. OrbWeaver applications

RM

switch architecture

Rx MAC

L

Parser

Parser

Queueing &
Scheduling

Ingress
Pipeline

Packet
Buffer

PRE

Egress
Pipeline

=
@
>
)
3

Tx MAC 4

N ports

Strawman: blind packet generation

Rx MAC Tx MAC 4

| Parser Queueing &

!E Egress Dvdiren '

Packet

S
- NN i = AT
- o e d = — g AT e v . — o s el Lz oo e &
» e o
ipeline
SRR
BN
i 3 = - ooy o =), ~ar g = g Y e s = v - "
Eor o ol o e TS N &7 TRy po o o ol v o e T 3 R WY - e oeo o e
- . = y e . y .
U

BU
"" .]
i
0]
\ L0 ‘

N/7 rate

Packet
Generator

Ll Parser)

Parser

Strawman: blind packet generation

Rx MAC Tx MAC 4

| Parser Queueing &

!E Egress Dvdiren b

Packet

- .= N - - b"
- gy N = P e e P P e Py Caied i A = e -
» e o
ipeline
SRR .
L
= i = - ooy <) g S i = - g S i = -) <
e o o v o e — TS N &7 TP _.3 po o o ol v o e e g _.3 - e oeo o S -
- . s _ Sy . y .
3
U

BU
0]
LD
0]
. 1) ‘

N/t rate | Parser .
Packet —
Generator

P Parser

Predictability even there is no user traffic @

70

Problems with blind packet generation

Rx MAC Tx MAC 4
| Parser Queueing & NortS
Q e
, | Packet | |
N/t rate +| Parser || ©.
Packet | Parser \
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

71

Problems with blind packet generation

Rx MAC

- Parser

N/t rate I [Py - -
Packet P Parser
Generator

#1 Scalability: overwhelm generator capacity to satisfy target rate for all ports

#2 Cross-traffic contention: affect throughput, latency, or loss of user traffic!

72

Problem #1: scalability

Solution: seed stream amplification

Rx MAC Tx MAC 4

| Parser \ _ N ports

Ll Parser i

2
o
—
)
=

Parser /

1/7 seed rate

Packet
Generator

Problem #2: cross-traffic contention at PRE

Rx MAC Tx MAC 4

| Parser \
5
Q

Ll Parser i

Parser /

Monopolize usage and waste PRE packet-level BW!

1/7 seed rate

Packet
Generator

74

Problem #2: cross-traffic contention at PRE

Solution: amplify seed stream on-demand

Rx MAC Tx MAC 4

| Parser \

| |
: Ingress | , |l Packet

— = 5 7| Multicast =i
Ll Parser)

= = d - a- b
9 3 PR S I
h-
5o Sy
| PSS a3
e
N
o v
Y
- N S TN 3 S sl a5 ~ Op *
P T F G N D e o Crue T B
‘-

Queueing &
cheduling

2/7 seed rate

Packet
Generator

Parser

Selective filtering
* Per-egress port bitmap indicating
packet presence in the last 7/2 cycle
* |f not, replicate an IDLE to the port

75

Problem: other contention points

Solution: leverage rich configuration options for priorities and buffer management

Rx MAC Tx MAC 4

Queueing & N ports

Acheduling

- Parser

2/7 seed rate | parseriirBummsimmbsnmsmmm e S = WWS.WM Lo

\vg

Packet

P Parser
Generator

User > SEED

SEED > User

» Zero impact of weaved stream predictability
« Zero impact of user traffic throughput or buffer usage
« Negligible impact of latency of user packets

76

Implementation and evaluation
Hardware prototype on a pair of Wedge 100BF-32X Tofino switches

Wattage [normalized]

Queuing time [ns]

w/ IDLE stream ——
w/o IDLE stream ——

[T/

40 60 80 100
Packet interval [us]

Targetrate - - -
Maximum ——

1.09 10—2
100 o]
1.06 107
1.05 Baseline L 10'5
1.04 | Only OrbWeaver —&— | O 6 |
' Maximum utilization —e— | &= 10" ¢
103 B -7 I
1.02 | 108 1
1.01 10° }
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 10°°
5 10 15 20 25 30 35 40 45 50 55 60
Time [s]
800 =
700 A =N
600 - '§ T
500 - §
400 c
300 - 3
>
200 - =
100 @
0 O

Utilization [%)]

C
0 20000 40000 60000 80000 100000 120000

Packet 77

Wattage [normalized]

Queuing time [ns]

Takeaway: Little-to-no impact of power draw, latency, or throughput

while guaranteeing predictability of the weaved stream!

R (I \Gh U (IR (I (I U I (I Q-

800
700
600
500
400
300
200
100

.09
.08
.07 |
.06 |
.05 ¢ Baseline
oo | Power draw Only OroWeaver —a—
: Maximum utilization ——
.03 |
.02 |
.01
5 10 15 20 25 30 35 40 45 50 55 60
Time [s]
| ===z w/o IDLE stream
mmmm W/ IDLE stream
1 oo Maximum
: Latency

60
Utilization [%)]

PDF

w/ IDLE stream ——
w/o IDLE stream ——

Predictability |

[T/
| \ \ \

0 20 40 60 80 100
Packet interval [us]

Targetrate - - -
Maximum ——

A

Observed interval [ns]

Scalability

C
0 20000 40000 60000 80000 100000 120000

Packet

78

OrbWeaver use cases

= =
S S

NN]
<>

<7

[R1 Predictability] — Infer network state at fine-granularity!

[R2 Little-to-zero overhead] — Inject information using IDLE cycles!

79

OrbWeaver use cases

Performance aware routin J Latency _
g ocalivation In-band telemetry J
Header CompressionJ Microburst detection J Consistent replicas J

[R1 Predictability] — Infer network state at fine-granularity!

[R2 Little-to-zero overhead] — Inject information using IDLE cycles!

80

Example: failure detection

Node A Node B
‘I am alive’ @ _
‘I am alive’ @ _
I am alive’ @ _
T2 suspect

Common approach:
Periodic, high priority heartbeats

Fundamentally indistinguishable:
message drop or actual failure?

Empirically, use conservative detection thresholds

81

Failure detection with OrbWeaver @

Before: Weak guarantee of the messaging channel

After: Guaranteed maximum inter-packet gap (120ns for 100 GbE)

g J: ----------- BFD 10° ;Is- " Original = Dropped x Reroute = 'g' 0.8 1 = Orb\(/)vg%:cgl
q_,15{ S (0000000000 0XXeemmmm| 9 06 | - BFD W
E = =5 <1lus 2 '
+ (O]
S S a4l N F 047 Near-zero
8o - 4 & 02 - impact!
3 = 1 8 | el
O L I I I : : : 0.0 T T
10G 25G 100G 0 1 2 3 4 100MB 1GB
Time [us]
Detection time of emulated failures using optical Instantaneous self-healing failure mitigation
attenuators under varying link speeds when combined with data-plane reroute

OrbWeaver pushes the detection speed to its limits

82

OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
« Sufficient for many in-band control functions

« Don't need to choose between coordination fidelity and bandwidth overhead

83

OrbWeaver: summary

- Weaved stream abstraction to harvest IDLE cycles
« Sufficient for many in-band control functions

« Don't need to choose between coordination fidelity and bandwidth overhead

* Implementable on today's RMT switches
« Push the utilization of IDLE cycles to its limits
« Guarantee predictability with little-to-zero overhead

Outline

<A, OrbWeaver (NSD/ 2022)

Reusing IDLE link cycles for in-
' ‘%’ " band control communication

Reuse

4
.

.

Mantis (SIGCOMM 2020)
Recycling switch resources for
e

flexible, sub-RTT reactions

Recycle

distributed cloud services

Beaver (OSD/ 2024) |

Reducing ‘tax’ of partial snapshots ford

JPeduce _ J

85

| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message
send

—>
Message(-

]
receive States
. m

EE
EE

Computat:o
step

H
States

86

| et’s talk about snapshots

Distributed snapshots: a class of distributed algorithms to capture consistent, global view of states

Message

Computat:o
step

Snapshots are useful!

G

Network telemetry Distributed software Deadlock detection Checkpointing and
debugging failure recovery

Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)

88

Classic distributed snapshots

e.qg., Chandy-Lamport (TOCS 1985)

In|t|at|on
€s

m Taadin
Node O ! \gg g

‘ Snapshot

Node 1 Consistent cut triggering

Guarantee of causal consistency @

For any event e in the cut, ife’ — e (Lamport’s ‘happened before’), e’ is in the cut.
y

89

Classic snapshots operate in an isolated universe

b” \

Node 1

7T

Consistent cut

Utopian: isolated ‘universe’ of nodes

Fundamental assumption:
The set of participants are closed under causal propagation.

@ Unfortunately, the assumption
mismatches the real-world scenarios!

90

he assumption rarely matches reality!

Instrumentation
constraints

Modular services

<[>
gy & =
Utopian: isolated ‘universe’ of nodes] E O
o
—
Costs and Hidden causality

overheads due to human

he assumption mismatches the reality!

@ Unrealistic to assume zero external interaction
Impractical to instrument all processes

Consequences?

Frontend
| An external node
Hidden causal relationship. ey < €,
.
[0 ®
o 1
Backend O s

e, In snapshot, yet ey not in snapshot!
o ta] [
2 Q

Backend 1 No longer consistent!

Nodes of interest

@ A single external node can break the guarantee!

93

Can we capture a causally consistent snapshot when
a subset of the broader system participates”

Beaver: practical partial snapshots

Out-group nodes
(Nodes without control)

@ The same causal consistency abstraction

'i@ Even when the target service interact with external,
— black box services (arbitrary number, scale, placement,

or semantics) via arbitrary pattern (including multi-hop

Arbitrary interactions propagation of causal dependencies)

B %. ® @ Zero impact over existing service traffic

That is, absence of blocking or any form of delaying
operations during distributed coordination
In-group nodes
(Nodes with VIPs of interest)

95

How Is it even possible without coordinating
machines external to those of interest?

— — ———— ~—~—

'Q' Build a dam like a Beaver! ‘

4

96

ldea 1:

Frontend

m
Backend O

Backend 1

Gateway (GW) indirection

e Out-group

’ Beaver’s gateway (GW) indirection:

1. Initiate GW to enter snapshot out-of-band
. 2. Mark inbound packets correspondingly

In-group

Gateway

Before: inconsistent cut at O (after e,)

With GW: consistent cut at O (before e,)

97

Theorem 1. With MGM, a partial snapshot Cpgy for PnC P
is causally consistent, that is, Ve € Cpap, if e.peP"Ae —e,
then €' € Cpar.

Proof. Lete.p = pf” ande'.p= pi-”. There are 3 cases:
1. Both events occur in the same process, i.e., i = j.
2. i # j and the causality relationship ¢’ — e is imposed
purely by in-group messages.
3. Otherwise, the causality relationship ¢ — e involves at
least one p € P

In cases (1) and (2), the theorem is trivially true using
identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e € Cparr) A (Fe’ — €) but (¢ ¢ Cpapr). With (3),
¢’ — e means that there must exist some e (at an out-group
process) satisfying ¢’ — e® — e. Now, because €’ ¢ Cparr,

we know e;f,.,, — €' or e;{.,, = ¢, that is, pg."’s local snapshot

happened bcjfore or duriné ¢'. Combined with the fact that the
gateway is the original initiator of the snapshot protocol, we
know that ey’ — ¢’ — e —e.

We can focus on a subset of the above causality chain:
e; — e. From the properties of the in-group snapshot proto-
col, e — e implies that e ¢ Cpap:.

This contradicts our original assumption that e € Cpgr,! [

Formal proof in paper

Formalizing idea 1: Monolithic Gateway Marking

Holds even if treating the out-group
nodes as black boxes

Sufficient to only observe the
Inbound messages

98

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW cost-eftectively?

Challenge 2 How to handle asynchronous GWs?

99

Challenge 1: instantiating GWs

@ Rerouting all inbound traffic through the GW is costly
Q Cloud data centers already place layer-4 load balancers (SLBs)

Internet

Data center fabric

Repurpose SLBs for in-situ marking
SLBVIP1 | I\, °SLBV|P2 @
. . Inter-VIP

Wy lnfiey e i %%

VIR 1 VIP 2

100

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

101

Implications of muiltiple SLBs

Out-group
Frontend 1 J

GW 1 hasn't initiated the new
snapshot mode to mark it,
triggering the violation

\ f

B /

]
Backend 1 ‘&o

e, in snapshot, yet ¢, that leads to it is not, inconsistent!

Backend O

&
Inconsistent™

o o o
==
[—]|[=]

[—=l|l=]|l=]

In-group

102

Handling multiple GWs: design space

How about blocking messages to ‘atomically’ trigger all SLBs?

& > .
) ‘ Can we get both consistency

~" Blocking and zero cost?
Correct but costly

Consistency

- Non-blocking -@- Optimistic Gateway Marking (OGM
y g
Consistency violation { Intuition & formalism

>

Cost ,
Mechanism

103

Challenge 2: handling multiple SLBs

Reflection: Beyond worst cases, when and how often does the violation occur?

Frontend

Time gap between
SLB initiation points

Out-group

In-group

Observation:

Causally relevant messages are rare!
GW—in-group—out-group—GW (external
causal chain)

Intuition: the resulting snapshot is consistent
1. if «% is large enough
2. or if % is ‘close’ enough

104

Theorem: if «» < «», the partial snapshot is consistent!

“—r =
+“—r =

Time gap between initiator-to-SLB one-way delays
Time to form an external causal chain (GW— in-group— out-group— GW)

Theorem 2. In a system with multiple asynchronous gateways,
let the wall-clock time of the first and last gateway snapshots
be e, = mings(eg'.t) and eg,,, = maxes(eg'.t), respec-
tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
8,8 €G, peP" and g € P*. If €5,,1 — Emnint < Tmins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (€ € Cparr) A (e’ — €) but (€' & Cparr). As before,
there must be some chain ¢’ — e® — e — e. Because ¢’ ¢
Cpart, We have e;;,, —é or e;j,, =¢/, that is, pj." must have

been triggered dirjectly or indjlfectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as . By the definition of T,;,, we have e8.f — e t>
Tmin > Cax-t — €gmin-1. Thus, at event ef, the gateway must
have already initiated the snapshot and will mark e8.m before
forwarding. This results in e ¢ C, "part> & contradiction! O

Formal proof in paper

Theorem: if «» < «», the partial snapshot is consistent!

<
-

Theorem 2. In a system with multiple asynchronous gateways,

Time gap between initiator-to-SLB one-way delays
B B . let the wall-clock time of the first and last gateway snapshots
Time to form an external causal chain (GW— in-group— out-group— GW) be €y = mins (65 and S~ man (€5, respec

tively. Also let Vg € G, Tyin = min(d(g,8';{p,q})), where
88 €G, pEP", and g€ P. If epy ot — €35t < Tonins
then the partial snapshot is causally consistent.

Proof. We extend the proof of Theorem 1 to a distributed
ttlgSmJlart 0 The remlth earethre wth(3)

Observation: condition holds in most cases anyway! m e A

ere must be some ham — e —>eg—) B e¢
Cpart, we hav e‘ﬂ,,—) p,-_ /, that is, pmuth

<% can approximate zero < /S relatively high “““ ;;;;nﬁiu;j

h a]:edymlt tzdth phtandwllma:k mbf
forwarding. This r¢ ultm & Cpart, a contradictiol D

« SLBs share the same region Formal proof in paper

> 3 trips through the fabric

* Proper placement of controller * Higher when the out-group is in
another DC or Internet

Optimistic execution in common cases

Optimistic Gateway /
Marking (OGM) \

Verification/rejection of
snapshots under worst cases

How does Beaver detect a snapshot violation?

Theorem: if «» < «», the partial snapshot is consistent

4¥» = Time gap between initiator-to-SLB one-way delays
4+ = [ime to form an external causal chain (GW— in-group— out-group— GW)

‘Q’ 1. Determine the lower bound of «+ statically

2. Measure a safe upper bound for <+ online using a single clock

@ False positives is fine as one can always retry!

107

Key ideas in Beaver ’

How to ensure consistency without coordinating external machines?
Idea 1: Indirection through Monolithic Gateway Marking (MGM)

How to enforce MGM practically in today's network?

Challenge 1 How to instantiate GW cost-eftectively?
Idea 2: Reuse existing SLBs with unique locations

Challenge 2 How to perform atomic snapshot initiation for asynchronous GWs?

Idea 3: Optimistic Gateway Marking (OGM)
» Optimistic execution in common cases
» Verification/rejection of snapshot under worst cases

108

More details about Beaver’s protocol...
* Synchronization-free snapshot veritication

» Supporting parallel snapshots

- Handling failures

- Handling packet loss, delay, and reordering

Implementation and evaluation

SLB-associated workflow

« Layer-3 ECMP forwarding per service VIPs: DELL EMC
PowerSwitch 54048-ON

« 1860 LoC for core SLB functions in DPDK

« 1040 LoC for backend server functions in XDP and tc O
=

Data center A

Layer-s switches
Client e
Beaver protocol integration (minimal logic) ,\
. 68 LoC for SLB DPDK data path logic eDarB N % =0
[co—-] 00 —
« 102 LoC for eBPF at in-group VMs °°‘S"L'BS o
Backend servers
Topology

Backend servers
(w/ in-group VIP)
« Qut-group locations: within the same DC, DC at a different

region, or on the Internet

« Scale up to 16 SLB servers and 1024 backend applications

110

Example: garbage collection for ephemeral storage

put/get/deref
> @ @ Ephemeral

storage

Backend

S

Backend In-group

Example: garbage collection for ephemeral storage

put/get/deref
> % @ Ephemeral

storage

Lambda life time

llllllllllllllllllllllllllll

e Sy -
S WA W A .

2

+1 -1
Backend In-group

112

Example: garbage collection for ephemeral storage

put/get/deref @ remera

@ storage
Lambda life time
)’1 :‘lllIllllllllllllllllll...:- Strawman
Invoke/ ""\"======frummmmnmnnnn 'Y
PR /f\ """ 'f \ Reference count = 0, unsafe recycle

'.\/' \/A\J \ decision of k!

=

_>%

get(k) deref(k) deref(k)

S AR W A 2

17 .
Backend X/x;’ X Reference count = 1, safe decision
S e 81,7 recognizing open reference to k

e’ +1e -1
Backend ’ %o In-group

113

Beaver: summary

The first partial snapshot protocol that extends classic distributed
snapshots in practical cloud settings

Guarantees causal consistency while incurring minimal changes and
overheads

Key idea: Exploit data center characteristics (e.g., unique topologies)

o cometh
g | am excited
about

|
P

P

Tran .
sistor
scalin
g is hitti
walls
Rise
of do
main
‘Spec. .
ific a
rators

115

A complementary approach:
build smarter systems

Uncover the hidden intelligence of
modern hardware

...today!

Uncover the hidden inteligence of modern hardware

A

Um«rg'fﬁ
;.u‘\:w

_ TiB e

MEMORy BB
CQNTROLLYER
SHARED | GLO

MEMORY | MEMORY

MEMOR
CHANNgl_Ye,

Networking ASICs Memory in general GPU memory
(programmable switches compute servers (memory subsystem (GDDR,
and smartNICs) controller, DRAMS. ..) HBM...)

117

Q& A

